#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib> using namespace std; typedef long long ll;
const double eps=1e-;
const int INF=0x3f3f3f3f;
const int maxn=;
const double PI=acos(-1.0); int head[maxn],path[maxn],vis[maxn];
int tt;
int ans,flag,cnt, n,m,s,t;; struct Edge
{
int from,to,cap,next;
}e[maxn]; void init()
{
cnt=;
memset(head,-,sizeof(head));
memset(vis,,sizeof(vis));
memset(path,,sizeof(path));
} void add(int u,int v,int w)
{
e[cnt].from=u;
e[cnt].to=v;
e[cnt].cap=w;
e[cnt].next=head[u];
head[u]=cnt++;
} int bfs()
{
queue<int> q;
q.push(s);
vis[s]=;
path[s]=-;
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-;i=e[i].next)
{
int v=e[i].to;
if(e[i].cap>&&!vis[v])
{
path[v]=i;
vis[v]=;
if(v == t)
return ;
q.push(v);
}
}
}
return ;
} int EdmondsKarp()
{
int Flow=;
int flow,i;
while(bfs())
{
memset(vis,,sizeof(vis));
i=path[t];
flow=INF;
while(i!=-)
{
flow=min(flow,e[i].cap);
i=path[e[i].from];
}
i=path[t];
while(i!=-)
{
e[i].cap-=flow;
e[i^].cap+=flow;
i=path[e[i].from];
}
Flow+=flow;
}
return Flow;
} int main()
{
scanf("%d",&tt);
while(tt--)
{
scanf("%d%d",&n,&m);
init();
scanf("%d%d",&s,&t);
for(int i=;i<m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c*+);
add(b,a,);
}
printf("%d\n",EdmondsKarp()%);
}
return ;
}

最小割

2017 ACM-ICPC 亚洲区(青岛赛区)网络赛 1009的更多相关文章

  1. 2016 ACM/ICPC亚洲区青岛站现场赛(部分题解)

    摘要 本文主要列举并求解了2016 ACM/ICPC亚洲区青岛站现场赛的部分真题,着重介绍了各个题目的解题思路,结合详细的AC代码,意在熟悉青岛赛区的出题策略,以备战2018青岛站现场赛. HDU 5 ...

  2. HDU 4046 Panda (ACM ICPC 2011北京赛区网络赛)

    HDU 4046 Panda (ACM ICPC 2011北京赛区网络赛) Panda Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: ...

  3. 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem【状态压缩】

    2017 ACM-ICPC 亚洲区(南宁赛区)网络赛  M. Frequent Subsets Problem 题意:给定N和α还有M个U={1,2,3,...N}的子集,求子集X个数,X满足:X是U ...

  4. ICPC 2018 徐州赛区网络赛

    ACM-ICPC 2018 徐州赛区网络赛  去年博客记录过这场比赛经历:该死的水题  一年过去了,不被水题卡了,但难题也没多做几道.水平微微有点长进.     D. Easy Math 题意:   ...

  5. 2017青岛赛区网络赛 Smallest Minimum Cut 求最小割的最小割边数

    先最大流跑一遍 在残存网络上把满流边容量+1 非满流边容量设为无穷大 在进行一次最大流即可 (这里的边都不包括建图时用于反悔的反向边) #include<cstdio> #include& ...

  6. HDU 5884 Sort -2016 ICPC 青岛赛区网络赛

    题目链接 #include <iostream> #include <math.h> #include <stdio.h> #include<algorith ...

  7. HDU 5881 Tea -2016 ICPC 青岛赛区网络赛

    题目链接 题意:有一壶水, 体积在 L和 R之间, 有两个杯子, 你要把水倒到两个杯子里面, 使得杯子水体积几乎相同(体积的差值小于等于1), 并且使得壶里剩下水体积不大于1. 你无法测量壶里剩下水的 ...

  8. HDU 5878 I Count Two Three (打表+二分查找) -2016 ICPC 青岛赛区网络赛

    题目链接 题意:给定一个数n,求大于n的第一个只包含2357四个因子的数(但是不能不包含其中任意一种),求这个数. 题解:打表+二分即可. #include <iostream> #inc ...

  9. HDU 5879 Cure -2016 ICPC 青岛赛区网络赛

    题目链接 题意:给定一个数n,求1到n中的每一项的平方分之一的累加和. 题解:题目没有给数据范围,而实际上n很大很大超过long long.因为题目只要求输出五位小数,我们发现当数大到一定程度时值是固 ...

  10. Skiing 2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络赛H题(拓扑序求有向图最长路)

    参考博客(感谢博主):http://blog.csdn.net/yo_bc/article/details/77917288 题意: 给定一个有向无环图,求该图的最长路. 思路: 由于是有向无环图,所 ...

随机推荐

  1. BZOJ4557 JLOI2016侦察守卫(树形dp)

    下称放置守卫的点为监控点.设f[i][j]为i子树中深度最大的未被监视点与i的距离不超过j时的最小代价,g[i][j]为i子树中距离i最近的监控点与i的距离不超过j且i子树内点全部被监视时的最小代价. ...

  2. [APIO2018] New Home

    题面在这里 description 在一个数轴上: 给定\(n\)个商店,每个商店有一个开业时间,关门时间,坐标和销售物品的种类 同时有\(m\)个询问,每个询问给你一个时间\(t[i]\)和地点\( ...

  3. cdq分治入门学习 cogs 1752 Mokia nwerc 2015-2016 G 二维偏序

    /* CDQ分治的对象是时间. 即对于一个时间段[L, R],我们取mid = (L + R) / 2. 分治的每层只考虑mid之前的修改对mid之后的查询的贡献,然后递归到[L,mid],(mid, ...

  4. 【BZOJ 1930】 [Shoi2003]pacman 吃豆豆 最大费用最大流

    如果你知道他是网络流的话你就很快会想到一个最大费用最大流的模型,然后你发现可能T,然而你发现你只用增广两次,然后你就开心的打了出来,然后发现被稠密图里spfa的丧病时间复杂度坑了,还是会T.于是我就开 ...

  5. 树形DP小结

    树形DP1.简介:树是一种数据结构,因为树具有良好的子结构,而恰好DP是从最优子问题更新而来,那么在树上做DP操作就是从树的根节点开始深搜(也就是记忆化搜索),保存每一步的最优结果.tips:树的遍历 ...

  6. 关闭listener监听日志

    有几次碰到过由于监听日志文件大小达到几G,使得在连接时非常慢,像hang住一样,windows下的监听日志达到4G限制,后续连接如果无法写监听日志,就会产生TNS-12537报错,可以通过关闭写监听日 ...

  7. 模拟实现jdk动态代理

    实现步骤 1.生成代理类的源代码 2.将源代码保存到磁盘 3.使用JavaCompiler编译源代码生成.class字节码文件 4.使用JavaCompiler编译源代码生成.class字节码文件 5 ...

  8. CSS选择器及CSS3新增选择器

    转自:http://www.cnblogs.com/libingql/p/4375354.html 1. CSS1定义的选择器 选择器 类型 说明 E 类型选择器 选择指定类型的元素 E#id ID选 ...

  9. Hibernate 三种状态变化 与 sql 语句的关系

    前言:在Hibernate中有三种状态,对它的深入理解,才能更好的理解hibernate的运行机理,刚开始不太注意这些概念,后来发现它是重要的.对于理解hibernate,JVM和sql的关系有更好的 ...

  10. MyBatis的SQL语句映射文件详解(三)----多参数传递的几种方式

    1.单一基本类型参数(String,int等) 单一的基本类型参数,将对应语句中的parameterType的值与参数的类型相同.然后直接 用“#{参数名}” 来获取 java代码 //String类 ...