额,前两天刚讲了数据结构,今天我来讲讲组合数学中的一种奇妙优化——Lucas

先看这样一个东西

没学过lucas的肯定会说:还不简单?处理逆元,边乘边膜呗

是,可以,但注意一下数据范围

你算这一次,你需要跑25000下

那么你如果求C199999 1~C199999 52222 呢?

你会发现你的复杂度上天了

所以我们会用到一个神奇的定理:Lucas定理

定理内容如下:
  Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p)

不好玩,是吗?

那么我来证明一下

由二项式定理可得,cmn等于(x+1)^m中n次项的系数

那么我们按Lucas展开

原式=(x+1)^(p^k*ak)*(x+1)^(p^(k-1)*a(k-1))*……*(x+1)^(p*a1)+(x+1)^(1*a0)

=[(x+1)^(p^k)]^ak……

由费马小定理可知,其%p后可转化为 (x+1)^ak*(x+1)^a(k-1)*……*(x+1)^a1*(x+1)^a0

原题转化为求上式的n次项的系数

同理,由于每一项已经消去了p^k次方 故即求每一项中的bk次项系数 即为Lucas

有什么用呢?

以前的组合数,我们一位一位地算(累死了)

现在的组合数,我们只用算%p出来的(这不就是log p m次吗?)

O(n)到O(logn)

大有长进啊

大家应该都会

下面看几道好题

combination【bzoj2928】

裸的板子,不说什么

《瞿葩的数字游戏》T3-三角圣地

带了预处理阶乘的Lucas

[SHOI2015]超能粒子炮·改

lucas合并

礼物,古代猪文

扩展Lucas

Lucas定理及应用的更多相关文章

  1. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  2. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  3. 大组合数:Lucas定理

    最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...

  4. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  5. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  6. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  7. 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  8. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

  9. HDU 4349 Xiao Ming's Hope lucas定理

    Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting nu ...

  10. HDU3037 Saving Beans(Lucas定理+乘法逆元)

    题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...

随机推荐

  1. 设计模式之职责链模式(JAVA实现)

    学习netty框架时,看到有人说netty用到了设计模式的职责链模式,学习一下职责链模式,主要参考大话设计模式. 主要场景: 小菜想要加薪,向经理提出加薪请求,经理没有权限,经理交由总监处理,总监也没 ...

  2. Scrapy框架之代理和cookie

    Cookie 是在 HTTP 协议下,服务器或脚本可以维护客户工作站上信息的一种方式.Cookie 是由 Web 服务器保存在用户浏览器(客户端)上的小文本文件,它可以包含有关用户的信息.无论何时用户 ...

  3. Android 第三方类库简单使用之EventBus

    Android 第三方类库之EventBus 1 PS 工欲善其事必先利其器. Eventbus也是一款在开发中常用的利器 这篇也对EventBus的简单介绍和使用,与之前个xutils介绍的级别一样 ...

  4. 注入类型(Injection Type)

    a) setter(重要) <property name="userDAO"> <ref bean="u"/> </propert ...

  5. ARM 中可用性集使用的注意事项

    Azure 目前有两种部署模型:经典部署模型 (ASM) 和资源管理器 (ARM).如果您之前使用过 ASM 模式下的可用性集,那么很可能在使用 ARM 模式下的可用性集时,会遇到一些问题或者疑惑.这 ...

  6. 【Python自然语言处理】第一章学习笔记——搜索文本、计数统计和字符串链表

    这本书主要是基于Python和一个自然语言工具包(Natural Language Toolkit, NLTK)的开源库进行讲解 NLTK 介绍:NLTK是一个构建Python程序以处理人类语言数据的 ...

  7. 爬虫入门之urllib库详解(二)

    爬虫入门之urllib库详解(二) 1 urllib模块 urllib模块是一个运用于URL的包 urllib.request用于访问和读取URLS urllib.error包括了所有urllib.r ...

  8. 文件读取方法(FileHelpers) z

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using FileHelp ...

  9. html css:背景图片链接css写法

    图片作为背景,并且是链接的写法.例如网站的logo图片.例如:土豆的logo图片 <a title="土豆网 tudou.com 每个人都是生活的导演" href=" ...

  10. pthread使用

    https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/Multithreading/CreatingTh ...