0.规划
 
两个节点:
 
ip
部署的程序
备注
192.168.56.2/bigdata.lzf
namenode,datanode,NodeManager,hive,presto,mysql,hive-metastore,presto-cli
主节点
192.168.56.3/bigdata.dn1.lzf
secondarynode,resourceManager,NodeManager,hive,presto,presto-cli
资源管理节点
 
hive由于不存在主从的问题,虽然metastore也可以部署多个。
如果有必要resourceManager也可以部署多个。
--
 
1.公共操作
 
1.1 创建用户
group add hadoop
useradd hadoop -G hadoop
 
1.2 设置ssh互通
使用rsa的互通
 
   1.2.1 分别在2,3机器上执行如下(hadoop用户下)
ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
chmod 0600 ~/.ssh/authorized_keys

1.2.2 把3的id_rsa.pub 复制到 2的id_rsa.pub_sl

       ssh bigdata.dn1.lzf
       cd .ssh
       scp id_rsa.pub hadoop@bigdata.lzf:~/.ssh/id_rsa.pub_sl
   1.2.3 把2的 id_rsa.pub_sl 追加都2的authorized_keys
       cd .ssh
       cat id_rsa.pub_sl>> authorized_keys 
   1.2.4 把2的authorized_keys复制到到3的/home/hadoop/.ssh/下
     
   之后进行验证:
  chmod 700 ~/.ssh
  chmod 600 ~/.ssh/authorized_keys  
  
  在2下执行ssh bigdata.dn1.lzf
  在3下执行ssh bigdata.lzf
  成功,则可以继续了。
  注:
   a.如果有更多的节点,操作时类似的,就是把所有的id_rsa.pub合并在一起,然后追加到主机的 authorized_keys ,最后把主机authorized_keys复制到各个节点上即可。
   b.至于使用rsa还是dsa看具体情况。
 
1.3 目录
 
以hadoop身份执行
mkdir -p  /home/hadoop/data_hadoop/hdfs/name
mkdir -p   /home/hadoop/data_hadoop/hdfs/data
mkdir -p /home/hadoop/data_hadoop/tmp
 
1.4 安装软件
在/home/haoop下安装
hadoop-2.8.0
 
1.5 环境变量配置
 
export JAVA_HOME=/usr/local/jdk1.8.0_131
export HADOOP_HOME=/home/hadoop/hadoop-2.8.0
export HADOOP_CONF_DIR=/home/hadoop/hadoop-2.8.0/etc/hadoop
export HADOOP_YARN_HOME=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_PREFIX=$HADOOP_HOME
export PATH=$PATH:$HOME/.local/bin:$HOME/bin:$JAVA_HOME/bin:$HADOOP_HOME/bin
 
1.6 修改各个env.sh和日志
根据单机的配置即可。
修改 etc/hadoop/log4j.properties 添加如下:
log4j.logger.org.apache.hadoop.util.NativeCodeLoader=DEBUG
 
2.节点配置
 
2.1 192.168.56.2   配置
 
core-site.xml
 
<property>
 <name>fs.defaultFS</name>
 <value>hdfs://bigdata.lzf:9001</value>
 <description>HDFS的URI,文件系统://namenode标识:端口号,默认是9000</description>
</property>
<property>
 <name>hadoop.tmp.dir</name>
 <value>/home/hadoop/data_hadoop/tmp</value>
 <description>namenode上本地的hadoop临时文件夹</description>
</property>
<property>
  <name>ipc.client.connect.max.retries</name>
  <value>100</value>
  <description>默认10次,现在配置100次</description>
</property>
<property>
  <name>ipc.client.connect.retry.interval</name>
  <value>10000</value>
  <description>连接间隔1秒钟,默认是0.1秒</description>
</property>
  --为了权限,例如通过beeline之类的通过访问
  添加以下内容:
<property>
 <name>hadoop.proxyuser.hadoop.hosts</name>
 <value>*</value>
</property>
<property>
 <name>hadoop.proxyuser.hadoop.groups</name>
 <value>*</value>
</property>
 
hdfs-site.xml 
 
<property>
    <name> dfs.namenode.name.dir</name>
    <value>/home/hadoop/data_hadoop/hdfs/name</value>
    <description>namenode上存储hdfs名字空间元数据 </description>
</property>
<property>
    <name> dfs.datanode.data.dir</name>
    <value>/home/hadoop/data_hadoop/hdfs/data</value>
    <description>datanode上数据块的物理存储位置</description>
</property>
<property>
    <name>dfs.replication</name>
    <value>2</value>
    <description>副本个数,配置默认是3,应小于datanode机器数量</description>
</property>
<property>
 <name>dfs.namenode.rpc-address</name>
 <value>bigdata.lzf:9001</value>
 <description>RPC address that handles all clients requests。有人说需要和fs.defaultFS 一样端口</description>
</property>
 
<property>
 <name>dfs.namenode.http-address</name>
 <value>bigdata.lzf:50070</value>
 <description>
 The address and the base port where the dfs namenode web ui will listen on.
 If the port is 0 then the server will start on a free port.
 </description>
</property>
<property>
 <name>dfs.namenode.secondary.http-address</name>
 <value>bigdata.dn1.lzf:50090</value>
</property>
 
slaves
#有两个节点
bigdata.lzf
bigdata.dn1.lzf
 
yarn-site.xml
#只是用于nodemanager
<configuration>
<property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
</property>
 
 
 
2.2 .192.168.56.3  配置
 
core-site.xml
 
<property>
 <name>fs.defaultFS</name>
 <value>hdfs://bigdata.lzf:9001</value>
 <description>HDFS的URI,文件系统://namenode标识:端口号,默认是9000</description>
</property>
<property>
 <name>hadoop.tmp.dir</name>
 <value>/home/hadoop/data_hadoop/tmp</value>
 <description>namenode上本地的hadoop临时文件夹</description>
</property>
<property>
  <name>ipc.client.connect.max.retries</name>
  <value>100</value>
  <description>默认10次,现在配置100次</description>
</property>
<property>
  <name>ipc.client.connect.retry.interval</name>
  <value>10000</value>
  <description>连接间隔1秒钟,默认是0.1秒</description>
</property>
  --为了权限,例如通过beeline之类的通过访问
  添加以下内容:
<property>
 <name>hadoop.proxyuser.hadoop.hosts</name>
 <value>*</value>
</property>
<property>
 <name>hadoop.proxyuser.hadoop.groups</name>
 <value>*</value>
</property>
 
hdfs-site.xml 
 
<property>
    <name> dfs.namenode.name.dir</name>
    <value>/home/hadoop/data_hadoop/hdfs/name</value>
    <description>namenode上存储hdfs名字空间元数据 </description>
</property>
<property>
    <name> dfs.datanode.data.dir</name>
    <value>/home/hadoop/data_hadoop/hdfs/data</value>
    <description>datanode上数据块的物理存储位置</description>
</property>
<property>
    <name>dfs.replication</name>
    <value>2</value>
    <description>副本个数,配置默认是3,应小于datanode机器数量</description>
</property>
<property>
 <name>dfs.namenode.rpc-address</name>
 <value>bigdata.lzf:9001</value>
 <description>RPC address that handles all clients requests。有人说需要和fs.defaultFS 一样端口</description>
</property>
<property>
 <name>dfs.namenode.http-address</name>
 <value>bigdata.lzf:50070</value>
 <description>
 The address and the base port where the dfs namenode web ui will listen on.
 If the port is 0 then the server will start on a free port.
 </description>
</property>
<property>
 <name>dfs.namenode.secondary.http-address</name>
 <value>bigdata.dn1.lzf:50090</value>
</property>
 
slaves
#有两个节点
bigdata.lzf
bigdata.dn1.lzf
 
yarn-site.xml
#resourceManager,nodemanager
<configuration>
 <property>
   <name>yarn.resourcemanager.address</name>
   <value>bigdata.dn1.lzf:8032</value>
   <description>资源管理器地址</description>
 </property>
<property>
        <name>yarn.resourcemanager.hostname</name>
        <value>bigdata.dn1.lzf</value>
        <description>资源管理器节点名称 </description>
</property>
<property>
        <name>yarn.resourcemanager.scheduler.class</name>
        <value> org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
        <description>调度器类 </description>
</property>
<property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
</property>
<property>
        <name>yarn.resourcemanager.webapp.address</name>
        <value>bigdata.dn1.lzf:8099</value>
        <description>用于管理集群的资源,可以通过浏览器访问 </description>
</property>
<property>
        <name>yarn.nodemanager.webapp.address</name>
        <value>bigdata.dn1.lzf:8042</value>
        <description>用于管理节点,可以通过浏览器访问 </description>
</property>
 
</configuration>
 
3.初始化
 
在2节点上执行
hdfs namenode -format 
不需要执行hdfs secondarynamenode -format
 
 
4.启动
 
4.1启动dfs
在主节点2行执行start-dfs.sh即可:
[hadoop@bigdata sbin]$ ./start-dfs.sh
17/07/21 17:28:44 DEBUG util.NativeCodeLoader: Trying to load the custom-built native-hadoop library...
17/07/21 17:28:44 DEBUG util.NativeCodeLoader: Loaded the native-hadoop library
Starting namenodes on [bigdata.lzf]
bigdata.lzf: starting namenode, logging to /home/hadoop/hadoop-2.8.0/logs/hadoop-hadoop-namenode-bigdata.lzf.out
bigdata.dn1.lzf: starting datanode, logging to /home/hadoop/hadoop-2.8.0/logs/hadoop-hadoop-datanode-bigdata.dn1.lzf.out
bigdata.lzf: starting datanode, logging to /home/hadoop/hadoop-2.8.0/logs/hadoop-hadoop-datanode-bigdata.lzf.out
Starting secondary namenodes [bigdata.dn1.lzf]
bigdata.dn1.lzf: starting secondarynamenode, logging to /home/hadoop/hadoop-2.8.0/logs/hadoop-hadoop-secondarynamenode-bigdata.dn1.lzf.out
17/07/21 17:29:05 DEBUG util.NativeCodeLoader: Trying to load the custom-built native-hadoop library...
17/07/21 17:29:05 DEBUG util.NativeCodeLoader: Loaded the native-hadoop library
 
然后可以在2,3上使用jps,分别可以看到以下内容 
5620 Jps
5239 NameNode
5373 DataNode
---
4069 DataNode
4261 Jps
4167 SecondaryNameNode
 
4.2 启动yarn
然后在节点3上执行:start-yarn.sh
注意:3节点才是配置为资源管理器节点的,所以只能从3启动,而不是从2
译注: 也许以后的版本不需要如此了!
         如果在2上执行start-yarn.sh也可以启动yarn集群,但rm就是2,而不是3了。
 
5.测试
 
创建目录
[hadoop@bigdata sbin]$ hadoop fs -mkdir /tmp
17/07/21 17:33:03 DEBUG util.NativeCodeLoader: Trying to load the custom-built native-hadoop library...
17/07/21 17:33:03 DEBUG util.NativeCodeLoader: Loaded the native-hadoop library
[hadoop@bigdata sbin]$ hadoop fs -ls /
17/07/21 17:33:16 DEBUG util.NativeCodeLoader: Trying to load the custom-built native-hadoop library...
17/07/21 17:33:16 DEBUG util.NativeCodeLoader: Loaded the native-hadoop library
Found 1 items
drwxr-xr-x   - hadoop supergroup          0 2017-07-21 17:33 /tmp
---
上传文件
[hadoop@bigdata sbin]$ hadoop fs -copyFromLocal -f  start-dfs.sh  hdfs://bigdata.lzf:9001/tmp
17/07/21 17:35:29 DEBUG util.NativeCodeLoader: Trying to load the custom-built native-hadoop library...
17/07/21 17:35:29 DEBUG util.NativeCodeLoader: Loaded the native-hadoop library
 
查看
这个是在3上执行的,前面创建目录和上传是在2执行的。
[hadoop@bigdata ~]$ hadoop fs -tail hdfs://bigdata.lzf:9001/tmp/start-dfs.sh
17/07/21 17:41:18 DEBUG util.NativeCodeLoader: Trying to load the custom-built native-hadoop library...
17/07/21 17:41:18 DEBUG util.NativeCodeLoader: Loaded the native-hadoop library
----------------------------------------
# quorumjournal nodes (if any) SHARED_EDITS_DIR=$($HADOOP_PREFIX/bin/hdfs getconf -confKey dfs.namenode.shared.edits.dir 2>&-) case "$SHARED_EDITS_DIR" in
qjournal://*)
JOURNAL_NODES=$(echo "$SHARED_EDITS_DIR" | sed 's,qjournal://\([^/]*\)/.*,\1,g; s/;/ /g; s/:[0-9]*//g')
echo "Starting journal nodes [$JOURNAL_NODES]"
"$HADOOP_PREFIX/sbin/hadoop-daemons.sh" \
--config "$HADOOP_CONF_DIR" \
--hostnames "$JOURNAL_NODES" \
--script "$bin/hdfs" start journalnode ;;
esac #---------------------------------------------------------
# ZK Failover controllers, if auto-HA is enabled
AUTOHA_ENABLED=$($HADOOP_PREFIX/bin/hdfs getconf -confKey dfs.ha.automatic-failover.enabled)
if [ "$(echo "$AUTOHA_ENABLED" | tr A-Z a-z)" = "true" ]; then
echo "Starting ZK Failover Controllers on NN hosts [$NAMENODES]"
"$HADOOP_PREFIX/sbin/hadoop-daemons.sh" \
--config "$HADOOP_CONF_DIR" \
--hostnames "$NAMENODES" \
--script "$bin/hdfs" start zkfc
fi # eof
http访问 
 
50070  默认是访问集群中的数据节点
http://bigdata.lzf:50070/explorer.html#/tmp  可以直接访问 hdfs://bigdata.lzf:9001/tmp在的文件。
50075 用户访问具体的数据节点
http://bigdata.lzf:50075,http://bigdata.dn1.lzf:50075
 
hadoop 的 wordcount 测试
 
hadoop jar /home/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.8.0.jar grep hdfs://bigdata.lzf:9001/tmp/hadoop-hadoop-namenode-bigdata.lzf.log  output '(lzf)'
17/07/24 11:44:04 INFO mapreduce.Job: Counters: 29
File System Counters
FILE: Number of bytes read=604458
FILE: Number of bytes written=1252547
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=1519982
HDFS: Number of bytes written=0
HDFS: Number of read operations=12
HDFS: Number of large read operations=0
HDFS: Number of write operations=5
Map-Reduce Framework
Combine input records=0
Combine output records=0
Reduce input groups=0
Reduce shuffle bytes=0
Reduce input records=0
Reduce output records=0
Spilled Records=0
Shuffled Maps =0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=0
Total committed heap usage (bytes)=169222144
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Output Format Counters
Bytes Written=0

根据测试,输出的内容会放在/user/hadoop/output目录下,事先不创建也没有关系。

 
6.遇到问题
6.1 ip地址变更的问题  
由于其中的主节点原来是承担了所有的角色,而且ip地址和现有的也不同。
其次,重新格式化之后,并没有删除掉原来的元数据目录。
所以,只好手动删除掉
rm -Rf   /home/hadoop/data_hadoop/hdfs/name
rm -Rf /home/hadoop/data_hadoop/hdfs/data
rm -Rf /home/hadoop/data_hadoop/hdfs/tmp
mkdir -p /home/hadoop/data_hadoop/hdfs/name
mkdir -p /home/hadoop/data_hadoop/hdfs/data
mkdir -p /home/hadoop/data_hadoop/tmp

6.2 区分namenode和secondarynamenode 的关键

hdfs-site.xml中改配置如下

<property>
 <name>dfs.namenode.http-address</name>
 <value>bigdata.lzf:50070</value>
 <description>
 The address and the base port where the dfs namenode web ui will listen on.
 If the port is 0 then the server will start on a free port.
 </description>
</property>
<property>
 <name>dfs.namenode.secondary.http-address</name>
 <value>bigdata.dn1.lzf:50090</value>
</property>

通过这个最简单的配置,了解hadoop中集群的简单工作原理。
 
后续的研究,包括:
1.增加数据节点
2.搭建ha-hadoop集群
3.搭建基于yarn的presto集群

搭建两个节点的大数据集群-1.hdfs集群的更多相关文章

  1. 大数据学习之hdfs集群安装部署04

    1-> 集群的准备工作 1)关闭防火墙(进行远程连接) systemctl stop firewalld systemctl -disable firewalld 2)永久修改设置主机名 vi ...

  2. vivo 万台规模 HDFS 集群升级 HDFS 3.x 实践

    vivo 互联网大数据团队-Lv Jia Hadoop 3.x的第一个稳定版本在2017年底就已经发布了,有很多重大的改进. 在HDFS方面,支持了Erasure Coding.More than 2 ...

  3. HDFS集群和YARN集群

    Hadoop集群环境搭建(一)   1集群简介 HADOOP集群具体来说包含两个集群:HDFS集群和YARN集群,两者逻辑上分离,但物理上常在一起 HDFS集群: 负责海量数据的存储,集群中的角色主要 ...

  4. 大数据-HDFS 集群搭建的配置文件

    1.HDFS简单版集群搭建相关配置文件 1.core-site.xml文件 <property> <name>fs.defaultFS</name> <val ...

  5. 大数据集群环境 zookeeper集群环境安装

    大数据集群环境 zookeeper集群环境准备 zookeeper集群安装脚本,如果安装需要保持zookeeper保持相同目录,并且有可执行权限,需要准备如下 编写脚本: vi zkInstall.s ...

  6. 大数据(2)---HDFS集群搭建

    一.准备工作 1.准备几台机器,我这里使用VMware准备了四台机器,一个name node,三个data node. VMware安装虚拟机:https://www.cnblogs.com/niju ...

  7. elasticsearch系列八:ES 集群管理(集群规划、集群搭建、集群管理)

    一.集群规划 搭建一个集群我们需要考虑如下几个问题: 1. 我们需要多大规模的集群? 2. 集群中的节点角色如何分配? 3. 如何避免脑裂问题? 4. 索引应该设置多少个分片? 5. 分片应该设置几个 ...

  8. 大数据【一】集群配置及ssh免密认证

    八月迷情,这个月会对大数据进行一个快速的了解学习. 一.所需工具简介 首先我是在大数据实验一体机上进行集群管理学习,管理五台实验机,分别为master,slave1,slave2,slave3,cli ...

  9. elasticsearch 集群管理(集群规划、集群搭建、集群管理)

    一.集群规划 搭建一个集群我们需要考虑如下几个问题: 1. 我们需要多大规模的集群? 2. 集群中的节点角色如何分配? 3. 如何避免脑裂问题? 4. 索引应该设置多少个分片? 5. 分片应该设置几个 ...

随机推荐

  1. html-框架标签的使用

    <frameset> - rows:按照行进行划分 ** <frameset rows="80,*"> - cols:按照列进行划分 ** <fram ...

  2. linux环境下安装jdk(本文示例是jdk1.6.0_45)

    第一步:创建一个文件夹安装jdk(虽说地址一般自定义,但是为了方便查找请按照笔者建议目录 ):/usr/java 将jdk-6u45-linux-x64.bin文件放到   /usr/java 文件夹 ...

  3. js添加、修改、删除xml节点例子

    version="1.0" encoding="gb2312"?> . <bookstore> . <book genre=" ...

  4. Linux自有服务

    Linux自有服务 Linux自带的功能:运行模式.用户和用户组管理.网络配置.ssh服务 1.运行模式 Linux下的初始化进程:init,进程id为1 该进程的配置文件:/etc/inittab ...

  5. 1e6等于多少?

    如果抽象成这样:aeb 要求a不能不写,也就是说是1也要写上 b必须是整数. 实现上就是 a*10^b a乘以10的b次方 所以楼主的就是1*10^6 100000

  6. php基础--取默认值以及类的继承

    (1)对于php的默认值的使用和C++有点类似,都是在函数的输入中填写默认值,以下是php方法中对于默认值的应用: <?phpfunction makecoffee($types = array ...

  7. App Inventor 网络资源及推荐书目

    Ai2服务器 官方服务器:http://ai2.appinventor.edu/ 官方备用服务器:(大陆可用):http://contest.appinventor.mit.edu/ 国内个人服务器: ...

  8. ViewPager+fragment的使用

    如图我在一个继承FragmentActivity的类中嵌套了3个fragment分别能实现3个不同的界面,默认展现第一个,在第一个的fragment中有个ViewPager在ViewPager中嵌套了 ...

  9. network embedding 需读论文

    Must-read papers on NRL/NE. github: https://github.com/nate-russell/Network-Embedding-Resources NRL: ...

  10. PHP接口对方(C#)接收不到数据?ContentLength=-1

    工作时遇到的问题.浏览器可以查看到json数据,但是对方死活收不到数据. 最后发现发现ContentLength=-1. 找到问题:为什么.NET程序下载获得的ContentLength=-1? 摘抄 ...