Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
Input

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1
行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中
第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。
Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

Sample Input

5 5

1 2 3 4 5

1 2

1 4

2 3

2 5

3 3

1 2 1

3 5

2 1 2

3 3
Sample Output

6

9

13

HINT

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。

题解:很裸的树剖题了……然而竟然因为写错了线段树调了一个多小时……emmm,如果分块是O(nlogn)的就好了┑( ̄Д  ̄)┍

代码如下:

#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lson root<<1
#define rson root<<1|1
#define hi puts("hi");
using namespace std; struct node
{
long long l,r,lazy,sum;
} tr[];
long long deep[],fa[],size[],son[],id[],top[],w[],c[],cnt=;
vector<int> g[]; void push_up(int root)
{
tr[root].sum=tr[lson].sum+tr[rson].sum;
} void push_down(int root)
{
int mid=(tr[root].l+tr[root].r)>>;
tr[lson].sum+=(mid-tr[root].l+)*tr[root].lazy;
tr[lson].lazy+=tr[root].lazy;
tr[rson].sum+=(tr[root].r-mid)*tr[root].lazy;
tr[rson].lazy+=tr[root].lazy;
tr[root].lazy=;
} void build(int root,int l,int r)
{
if(l==r)
{
tr[root].l=l;
tr[root].r=r;
tr[root].sum=w[l];
return ;
}
tr[root].l=l;
tr[root].r=r;
int mid=(l+r)>>;
build(lson,l,mid);
build(rson,mid+,r);
push_up(root);
} void add(int root,int l,int r,int x)
{
if(l==tr[root].l&&r==tr[root].r)
{
tr[root].lazy+=x;
tr[root].sum+=(tr[root].r-tr[root].l+)*x;
return;
}
int mid=(tr[root].l+tr[root].r)>>;
if(tr[root].lazy) //
{
push_down(root);
}
if(l>mid)
{
add(rson,l,r,x); //!!!
}
else
{
if(r<=mid)
{
add(lson,l,r,x); //!!!
}
else
{
add(lson,l,mid,x);
add(rson,mid+,r,x);
}
}
push_up(root); //
} long long query(int root,int l,int r)
{
if(l==tr[root].l&&tr[root].r==r)
{
return tr[root].sum;
}
int mid=(tr[root].l+tr[root].r)>>;
if(tr[root].lazy)
{
push_down(root); //
}
if(l>mid)
{
return query(rson,l,r); //!!!
}
else
{
if(r<=mid)
{
return query(lson,l,r); //!!!
}
}
return query(lson,l,mid)+query(rson,mid+,r);
} void dfs1(int now,int f,int dep)
{
deep[now]=dep;
fa[now]=f;
size[now]=;
int maxson=-;
for(int i=;i<g[now].size();i++)
{
if(g[now][i]==f)
{
continue;
}
dfs1(g[now][i],now,dep+);
size[now]+=size[g[now][i]]; //
if(size[g[now][i]]>maxson)
{
son[now]=g[now][i];
maxson=size[g[now][i]];
}
}
} void dfs2(int now,int topf)
{
id[now]=++cnt;
w[cnt]=c[now];
top[now]=topf;
if(!son[now])
{
return ;
}
dfs2(son[now],topf);
for(int i=;i<g[now].size();i++)
{
if(g[now][i]==son[now]||g[now][i]==fa[now])
{
continue;
}
dfs2(g[now][i],g[now][i]);
}
} void point_add(int x,int val)
{
add(,id[x],id[x],val);
} void sub_add(int x,int val)
{
add(,id[x],id[x]+size[x]-,val);
} void path_sum(int x,int y)
{
long long ans=;
while(top[x]!=top[y])
{
if(deep[top[x]]<deep[top[y]]) //
{
swap(x,y);
}
ans+=query(,id[top[x]],id[x]);
x=fa[top[x]];
}
if(deep[x]>deep[y])
{
swap(x,y);
}
ans+=query(,id[x],id[y]);
printf("%lld\n",ans);
} int main()
{
int n,m,kd,x,a;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%lld",&c[i]);
}
for(int i=;i<=n-;i++)
{
int from,to;
scanf("%d%d",&from,&to);
g[from].push_back(to);
g[to].push_back(from);
}
dfs1(,,);
dfs2(,);
build(,,n);
for(int i=;i<=m;i++)
{
scanf("%d",&kd);
if(kd==)
{
scanf("%d%d",&x,&a);
point_add(x,a);
}
if(kd==)
{
scanf("%d%d",&x,&a);
sub_add(x,a);
}
if(kd==)
{
scanf("%d",&x);
path_sum(,x);
}
}
}

省选一试爆炸了qwq

BZOJ 4034[HAOI2015]树上操作(树链剖分)的更多相关文章

  1. bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Stat ...

  2. bzoj 4034: [HAOI2015]树上操作——树链剖分

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中 ...

  3. bzoj4034[HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6163  Solved: 2025[Submit][Stat ...

  4. bzoj 4034 [HAOI2015] T2(树链剖分,线段树)

    4034: [HAOI2015]T2 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1536  Solved: 508[Submit][Status] ...

  5. BZOJ 4034 [HAOI2015]T2(树链剖分)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4034 [题目大意] 有一棵点数为 N 的树,以点 1 为根,且树点有边权. 有 M 个 ...

  6. 【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树

    [BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 ...

  7. BZOJ4034 [HAOI2015]树上操作 树链剖分

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4034 题意概括 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三 ...

  8. P3178 [HAOI2015]树上操作 树链剖分

    这个题就是一道树链剖分的裸题,但是需要有一个魔性操作___编号数组需要开longlong!!!震惊!真的神奇. 题干: 题目描述 有一棵点数为 N 的树,以点 为根,且树点有边权.然后有 M 个操作, ...

  9. BZOJ4034[HAOI2015]树上操作——树链剖分+线段树

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都 ...

随机推荐

  1. JavaWeb中验证码的实现

    在Web程序中,验证码是经常使用的技术之一.Web程序永远面临未知用户和未知程序的探测.为了防止恶意脚本的执行,验证码技术无疑是首选方案之一.本文将讨论如何在JSP和Servlet中使用验证码技术. ...

  2. 【openCV学习笔记】【1】如何载入一张图片

    直接看代码好了 #include <iostream> #include <opencv/highgui.h>//这里主要用到窗口显示 int main(int argc, c ...

  3. 支付宝sdk集成

    支付宝开放平台 http://doc.open.alipay.com/doc2/detail?treeId=59&articleId=103563&docType=1 集成步骤: 1. ...

  4. 用 Python 实现文件查找

    用 Python 实现文件查找(BIF实现及队列实现) (1)利用内置函数实现文件查找 1.功能:返回用户输入的文件的绝对路径 2.设计思路: (1)用户输入在哪个盘进行查找 (2)遍历此盘文件,若为 ...

  5. (转)winform下TCP通信的简单应用

    本文转载自:http://blog.csdn.net/wanlong360599336/article/details/7557064 先看效果图: TCP比较繁琐的就是三次握手定理,每次再发送数据前 ...

  6. java代码----equals和==区别

    总结: ==的意义在于比较的是整型 package com.aa; // public class Bd { public static void main(String[] args) { Inte ...

  7. 常用FTP命令 1. 连接ftp服务器

    1. 连接ftp服务器 格式:ftp [hostname| ip-address]a)在linux命令行下输入: ftp 192.168.1.1 b)服务器询问你用户名和密码,分别输入用户名和相应密码 ...

  8. AngularJS:简介

    ylbtech-AngularJS:简介 1.返回顶部 1. AngularJS 简介 AngularJS 是一个 JavaScript 框架.它可通过 <script> 标签添加到 HT ...

  9. 恒创科技 基于openStack云主机

    https://www.henghost.com/cloud-vps.shtml?s=gg&gclid=CKaXuOyr79UCFY-TvQodMJ8BCw

  10. 判断修改的中的值,用前面的,否则容易获得空值;this.dataGridView1.Rows[i].Cells[0].EditedFormattedValue; VS bool b = (bool)this.dataGridView1.Rows[i].Cells[0].Value;

    判断修改的中的值,用前面的,否则容易获得空值:this.dataGridView1.Rows[i].Cells[0].EditedFormattedValue;  VS     bool b = (b ...