Hadoop 使用Combiner提高Map/Reduce程序效率
众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出。
在上述过程中,我们看到至少两个性能瓶颈:
- 如果我们有10亿个数据,Mapper会生成10亿个键值对在网络间进行传输,但如果我们只是对数据求最大值,那么很明显的Mapper只需要输出它所知道的最大值即可。这样做不仅可以减轻网络压力,同样也可以大幅度提高程序效率。
- 使用专利中的国家一项来阐述数据倾斜这个定义。这样的数据远远不是一致性的或者说平衡分布的,由于大多数专利的国家都属于美国,这样不仅Mapper中的键值对、中间阶段(shuffle)的键值对等,大多数的键值对最终会聚集于一个单一的Reducer之上,压倒这个Reducer,从而大大降低程序的性能。
Hadoop通过使用一个介于Mapper和Reducer之间的Combiner步骤来解决上述瓶颈。你可以将Combiner视为Reducer的一个帮手,它主要是为了削减Mapper的输出从而减少网
络带宽和Reducer之上的负载。如果我们定义一个Combiner,MapReducer框架会对中间数据多次地使用它进行处理。
如果Reducer只运行简单的分布式方法,例如最大值、最小值、或者计数,那么我们可以让Reducer自己作为Combiner。但许多有用的方法不是分布式的。以下我们使用求平均值作为例子进行讲解:
Mapper输出它所处理的键值对,为了使单个DataNode计算平均值Reducer会对它收到的<key,value>键值对进行排序,求和。
由于Reducer将它所收到的<key,value>键值的数目视为输入数据中的<key,value>键值对的数目,此时使用Combiner的主要障碍就是计数操作。我们可以重写MapReduce程序来明确的跟踪计数过程
- package com;
- import java.io.IOException;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.conf.Configured;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.DoubleWritable;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
- import org.apache.hadoop.util.Tool;
- import org.apache.hadoop.util.ToolRunner;
- public class AveragingWithCombiner extends Configured implements Tool {
- public static class MapClass extends Mapper<LongWritable,Text,Text,Text> {
- static enum ClaimsCounters { MISSING, QUOTED };
- // Map Method
- public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
- String fields[] = value.toString().split(",", -20);
- String country = fields[4];
- String numClaims = fields[8];
- if (numClaims.length() > 0 && !numClaims.startsWith("\"")) {
- context.write(new Text(country), new Text(numClaims + ",1"));
- }
- }
- }
- public static class Reduce extends Reducer<Text,Text,Text,DoubleWritable> {
- // Reduce Method
- public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
- double sum = 0;
- int count = 0;
- for (Text value : values) {
- String fields[] = value.toString().split(",");
- sum += Double.parseDouble(fields[0]);
- count += Integer.parseInt(fields[1]);
- }
- context.write(key, new DoubleWritable(sum/count));
- }
- }
- public static class Combine extends Reducer<Text,Text,Text,Text> {
- // Reduce Method
- public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
- double sum = 0;
- int count = 0;
- for (Text value : values) {
- String fields[] = value.toString().split(",");
- sum += Double.parseDouble(fields[0]);
- count += Integer.parseInt(fields[1]);
- }
- context.write(key, new Text(sum+","+count));
- }
- }
- // run Method
- public int run(String[] args) throws Exception {
- // Create and Run the Job
- Job job = new Job();
- job.setJarByClass(AveragingWithCombiner.class);
- FileInputFormat.addInputPath(job, new Path(args[0]));
- FileOutputFormat.setOutputPath(job, new Path(args[1]));
- job.setJobName("AveragingWithCombiner");
- job.setMapperClass(MapClass.class);
- job.setCombinerClass(Combine.class);
- job.setReducerClass(Reduce.class);
- job.setInputFormatClass(TextInputFormat.class);
- job.setOutputFormatClass(TextOutputFormat.class);
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(Text.class);
- System.exit(job.waitForCompletion(true) ? 0 : 1);
- return 0;
- }
- public static void main(String[] args) throws Exception {
- int res = ToolRunner.run(new Configuration(), new AveragingWithCombiner(), args);
- System.exit(res);
- }
- }
Hadoop 使用Combiner提高Map/Reduce程序效率的更多相关文章
- Hadoop实战:使用Combiner提高Map/Reduce程序效率
好不easy算法搞定了.小数据測试也得到了非常好的结果,但是扔到进群上.挂上大数据就挂了.无休止的reduce不会结束了. .. .. .... .. ... .. ================= ...
- Hadoop学习笔记2 - 第一和第二个Map Reduce程序
转载请标注原链接http://www.cnblogs.com/xczyd/p/8608906.html 在Hdfs学习笔记1 - 使用Java API访问远程hdfs集群中,我们已经可以完成了访问hd ...
- map reduce程序示例
map reduce程序示例 package test2; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop. ...
- eclipse 中运行 Hadoop2.7.3 map reduce程序 出现错误(null) entry in command string: null chmod 0700
运行map reduce任务报错: (null) entry in command string: null chmod 0700 解决办法: 在https://download.csdn.net/d ...
- 使用Python实现Map Reduce程序
使用Python实现Map Reduce程序 起因 想处理一些较大的文件,单机运行效率太低,多线程也达不到要求,最终采用了集群的处理方式. 详细的讨论可以在v2ex上看一下. 步骤 MapReduce ...
- 第一个map reduce程序
完成了第一个mapReduce例子,记录一下. 实验环境: hadoop在三台ubuntu机器上部署 开发在window7上进行 hadoop版本2.2.0 下载了hadoop-eclipse-plu ...
- Hadoop 2.4.1 Map/Reduce小结【原创】
看了下MapReduce的例子.再看了下Mapper和Reducer源码,理清了参数的意义,就o了. public class Mapper<KEYIN, VALUEIN, KEYOUT, VA ...
- C#、JAVA操作Hadoop(HDFS、Map/Reduce)真实过程概述。组件、源码下载。无法解决:Response status code does not indicate success: 500。
一.Hadoop环境配置概述 三台虚拟机,操作系统为:Ubuntu 16.04. Hadoop版本:2.7.2 NameNode:192.168.72.132 DataNode:192.168.72. ...
- Hadoop Map/Reduce的工作流
问题描述 我们的数据分析平台是单一的Map/Reduce过程,由于半年来不断地增加需求,导致了问题已经不是那么地简单,特别是在Reduce阶段,一些大对象会常驻内存.因此越来越顶不住压力了,当前内存问 ...
随机推荐
- HDU - 6314:Matrix (广义容斥)(占位)
Samwell Tarly is learning to draw a magical matrix to protect himself from the White Walkers. the ma ...
- 剑指Offer面试题:8.二进制中1的个数
一 题目:二进制中1的个数 题目:请实现一个整数,输出该数二进制表示中1的个数.例如把9表示成二进制是1001,有2位是1.因此如果输入9,该函数输出2. 二 可能引起死循环的解法 // 计算整数的二 ...
- bzoj 1725 Corn Fields
Written with StackEdit. Description Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行\((1<=M<=12; 1<=N< ...
- 《DSP using MATLAB》示例Example7.22
代码: h = [1, 2, 3, 4, 3, 2, 1]/15; M = length(h); n = 0:M-1; [Hr, w, a, L] = Hr_Type1(h); a L amax = ...
- Oracle 11G RAC:生产环境下架构
转: it168网站 原创 作者:刘炳林 在真实环境搭建一套Oracle RAC就好比是一堂劳动课,劳动前需要准备好劳动工具,对劳动课内容有充分的认识;按照步骤一步一步进行,需要考虑劳动过程中可能遇 ...
- List<Map> 排序
import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.u ...
- mysql事务之一:MySQL数据库事务隔离级别(Transaction Isolation Level)及锁的实现原理
一.数据库隔离级别 数据库隔离级别有四种,应用<高性能mysql>一书中的说明: 然后说说修改事务隔离级别的方法: 1.全局修改,修改mysql.ini配置文件,在最后加上 1 #可选参数 ...
- PHP中的精确计算bcadd,bcsub,bcmul,bcdiv
引言:一定要确保数据的准确性.这是一个好的程序员的基本素养. <?php /** * 精确加法 * @param [type] $a [description] * @param [type] ...
- bootstrap-datetimepicker如何只显示到日期
bootstrap-datetimepicker 一般都是设置到时分秒,有时候并不需要,怎么处理呢? minView: "month", //选择日期后,不会再跳转去选择时分秒 1 ...
- Linux平台总线驱动设备模型
platform总线是一种虚拟的总线,相应的设备则为platform_device,而驱动则为platform_driver.Linux 2.6的设备驱动模型中,把I2C.RTC.LCD等都归纳为pl ...