Brief Description

Algorithm Design

下面给出后缀自动机的一个性质:

两个子串的最长公共后缀,位于这两个串对应的状态在parent树上的lca状态上。并且最长公共后缀的长度就是lca状态的len。

证明:对于一个串,他的所有祖先节点都是他的后缀,并且深度越大,长度越长,由此不难说明两个子串的最长公共后缀一定在lca状态上。考察这个lca,他代表的所有子串一定都是两个子串的公共后缀,我们直接取最大的就可以了。

有了这个性质,我们就可以开始乱搞了。

Code

#include <algorithm>
#include <cstdio>
#include <cstring>
#define ll long long
const ll maxn = 500100 << 1;
char s[maxn], str[maxn];
ll head[maxn], f[maxn];
ll ans;
ll n, cnt = 1;
struct edge {
ll to, next;
} e[maxn];
void add_edge(ll u, ll v) {
e[++cnt].to = v;
e[cnt].next = head[u];
head[u] = cnt;
}
struct Suffix_Automaton {
ll fa[maxn], trans[maxn][26], len[maxn], right[maxn];
ll last, root, sz;
bool flag[maxn];
void init() {
memset(flag, 0, sizeof(flag));
sz = 0;
last = root = ++sz;
}
void insert(ll x) {
ll p = last, np = last = ++sz;
len[np] = len[p] + 1;
flag[np] = 1;
right[np] = right[p] + 1;
for (; !trans[p][x]; p = fa[p])
trans[p][x] = np;
if (p == 0)
fa[np] = root;
else {
ll q = trans[p][x];
if (len[q] == len[p] + 1) {
fa[np] = q;
} else {
ll nq = ++sz;
fa[nq] = fa[q];
memcpy(trans[nq], trans[q], sizeof(trans[q]));
len[nq] = len[p] + 1;
fa[q] = fa[np] = nq;
for (; trans[p][x] == q; p = fa[p])
trans[p][x] = nq;
}
}
}
void pre() {
for (ll i = 1; i <= sz; i++) {
if (fa[i])
add_edge(fa[i], i);
}
}
void print() {
for (ll i = 1; i <= sz; i++) {
printf("%3lld ", i);
}
printf("\n");
for (ll i = 1; i <= sz; i++) {
printf("%3lld ", len[i]);
}
printf("\n");
for (ll i = 1; i <= sz; i++)
if (flag[i]) {
printf("%lld:", i);
for (ll j = 1; j <= len[i]; j++)
printf("%c", str[right[i] - (len[i] - j + 1) + 1]);
printf("\n");
}
printf("\n");
}
} sam;
void dfs(ll x) {
ll ct = 0;
f[x] = sam.flag[x] ? 1 : 0;
for (ll i = head[x]; i; i = e[i].next) {
dfs(e[i].to);
ans -= 1ll * 2 * (1ll * f[e[i].to] * ct) * (sam.len[x]);
ct += f[e[i].to];
}
if (f[x] == 1) {
ans -= 1ll * 2 * (1ll * ct) * (sam.len[x]);
}
f[x] += ct;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input", "r", stdin);
#endif
scanf("%s", s + 1);
n = strlen(s + 1);
sam.init();
for (ll i = 1; i <= n; i++) {
ans += (n * i) - i * i + ((n * n - i * i + n - i) >> 1);
str[i] = s[n - i + 1];
}
for (ll i = 1; i <= n; i++)
sam.insert(str[i] - 'a');
sam.pre();
// sam.print();
// printf("%lld\n", ans);
dfs(sam.root);
printf("%lld\n", ans);
}

[bzoj3238][Ahoi2013]差异——后缀自动机的更多相关文章

  1. BZOJ3238: [Ahoi2013]差异(后缀自动机)

    题意 题目链接 Sol 前面的可以直接算 然后原串翻转过来,这时候变成了求任意两个前缀的最长公共后缀,显然这个值应该是\(len[lca]\),求出\(siz\)乱搞一下 #include<bi ...

  2. BZOJ 3238: [Ahoi2013]差异 [后缀自动机]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2512  Solved: 1140[Submit][Status ...

  3. bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

    [bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  4. [Ahoi2013]差异(后缀自动机)

    /* 前面的那一坨是可以O1计算的 后面那个显然后缀数组单调栈比较好写??? 两个后缀的lcp长度相当于他们在后缀树上的lca的深度 那么我们就能够反向用后缀自动机构造出后缀树然后统计每个点作为lca ...

  5. 洛谷P4248 [AHOI2013]差异(后缀自动机求lcp之和)

    题目见此 题解:首先所有后缀都在最后一个np节点,然后他们都是从1号点出发沿一些字符边到达这个点的,所以下文称1号点为根节点,我们思考一下什么时候会产生lcp,显然是当他们从根节点开始一直跳相同节点的 ...

  6. BZOJ 3238 [Ahoi2013]差异 ——后缀自动机

    后缀自动机的parent树就是反串的后缀树. 所以只需要反向构建出后缀树,就可以乱搞了. #include <cstdio> #include <cstring> #inclu ...

  7. [AHOI2013]差异 后缀自动机_Parent树

    题中要求: $\sum_{1\leqslant i < j \leq n } Len(T_{i}) +Len(T_{j})-2LCP(T_{i},T_{j})$ 公式左边的部分很好求,是一个常量 ...

  8. BZOJ.3238.[AHOI2013]差异(后缀自动机 树形DP/后缀数组 单调栈)

    题目链接 \(Description\) \(Solution\) len(Ti)+len(Tj)可以直接算出来,每个小于n的长度会被计算n-1次. \[\sum_{i=1}^n\sum_{j=i+1 ...

  9. BZOJ 3238: [Ahoi2013]差异 后缀自动机 树形dp

    http://www.lydsy.com/JudgeOnline/problem.php?id=3238 就算是全局变量,也不要忘记,初始化(吐血). 长得一副lca样,没想到是个树形dp(小丫头还有 ...

随机推荐

  1. 【jQuery】 js 对象

    [jQuery] js 对象 一.  创建对象的三种方式 <script> var v1 = new Object(); v1.name = "name1"; v1.a ...

  2. 圣思源Java视频36节练习源码分享(自己的190+行代码对比老师的39行代码)

    题目: * 随机生成50个数字(整数),每个数字范围是[10,50],统计每个数字出现的次数 * 以及出现次数最多的数字与它的个数,最后将每个数字及其出现次数打印出来, * 如果某个数字出现次数为0, ...

  3. BI领军者之一Tableau试用浅谈

    下图是最新的Gartner BI Magic Quadrant,其中领军者之一的Tableau表现的异常突出,执行力象限上直接甩开其它产品一条街,前瞻性象限上略微超越了MSBI,怀着无比的好奇心,特意 ...

  4. Google序列化库FlatBuffers 1.1发布,及与protobuf的比较

    个人总结: FlatBuffer相对于Protobuffer来讲,优势如下: 1. 由于省去了编解码的过程,所以从速度上快于Protobuffer,个人测试结果100w次编解码,编码上FlatBuff ...

  5. 算法搬运之BFPRT算法

    原文连接:http://noalgo.info/466.html BFPRT算法,又称为中位数的中位数算法,由5位大牛(Blum . Floyd . Pratt . Rivest . Tarjan)提 ...

  6. CCF-NOIP-2018 提高组(复赛) 模拟试题(四)

    T1 贪吃蛇 [问题描述] 贪吃蛇是一个好玩的游戏.在本题中,你需要对这个游戏进行模拟. 这个游戏在一个 \(n\) 行 \(m\) 列的二维棋盘上进行. 我们用 \((x, y)\) 来表示第 \( ...

  7. 问题 B: Prime Number

    题目描述 Output the k-th prime number. 输入 k≤10000 输出 The k-th prime number. 样例输入 10 50 样例输出 29 229 #incl ...

  8. AcCoder Contest-115 D - Christmas

    D - Christmas Time limit : 2sec / Memory limit : 1024MB Score : 400 points Problem Statement In some ...

  9. 搭建Hadoop环境(二)

    摘要:近来又用到了Linux系统,所以就又新装了一个虚拟机和CentOS 6.4来用,搞开发的程序猿们可能都知道,在现在的很多企业中,生产环境大多都是Linux服务器,并且用的比较多的大都是CentO ...

  10. C++关于堆的函数

    建立堆 make_heap(_First, _Last, _Comp) 默认是建立最大堆的.对int类型,可以在第三个参数传入greater<int>()得到最小堆.   在堆中添加数据 ...