Dilworth定理:偏序集能划分成的最少的全序集的个数与最大反链的元素个数相等。

证明:http://www.cnblogs.com/itlqs/p/6636222.html

题目让求的是最大反链的长度,因此可以转化为最少能划分成的链的个数。这个问题可以用二分图的最大匹配做。

建立一个二分图,两边都是n个点,原图的每个点 i 对应两个,在左边的叫做 i1, 在右边的叫做 i2 。

然后原图中如果存在一条边 (x, y),那么就在二分图中建立 (x1, y2) 的边。

这样建立二分图之后,原图的点数 n - 二分图最大匹配 = 原图的最小路径覆盖(路径不能相交)。

这样为什么是对的呢?我们可以认为,开始时原图的每个点都是独立的一条路径,然后我们每次在二分图中选出一条边,就是将两条路径连接成一条路径,答案数就减少1。

因此最大的匹配就对应着减去的路径最多,也就是最少的链。

参考:http://www.cnblogs.com/JoeFan/p/4324380.html

要注意的是需要先做一次传递闭包,因为这里的边是具有传递性的,输入给出的所有u v边,还可以推出一些边,这些隐含边也要加进图里。(这样其实是把路径不能相交变成了路径可以相交)

#include<bits/stdc++.h>
using namespace std; const int MAXN=;
int g[MAXN][MAXN]; int uN,vN;
int linker[MAXN];
bool used[MAXN];
bool dfs(int u)
{
for(int v = ; v < vN; v++)
if(g[u][v] && !used[v])
{
used[v] = true;
if(linker[v] == - || dfs(linker[v]))
{
linker[v] = u;
return true;
}
}
return false;
}
int hungary()
{
int res = ;
memset(linker,-,sizeof(linker));
for(int u = ; u < uN; u++)
{
memset(used,false,sizeof(used));
if(dfs(u))res++;
}
return res;
} int main()
{
int n,m;
while (~scanf("%d%d",&n,&m))
{
memset(g,,sizeof(g));
for (int i=; i<=m; i++)
{
int u,v;
scanf("%d%d",&u,&v);
g[u-][v-]=;
}
for (int k=; k<n; k++)
for (int i=; i<n; i++)
for (int j=; j<n; j++)
if (g[i][k] && g[k][j]) g[i][j]=;
uN=vN=n;
printf("%d\n",n-hungary());
}
return ;
}

[bzoj 1143]最长反链二分图最大匹配的更多相关文章

  1. BZOJ 1059 [ZJOI2007]矩阵游戏 (二分图最大匹配)

    1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5281  Solved: 2530[Submit][Stat ...

  2. [BZOJ 1143] [CTSC2008] 祭祀river 【最长反链】

    题目链接:BZOJ - 1143 题目分析 这道题在BZOJ上只要求输出可选的最多的祭祀地点个数,是一道求最长反链长度的裸题. 下面给出一些相关知识: 在有向无环图中,有如下的一些定义和性质: 链:一 ...

  3. BZOJ 1143: [CTSC2008]祭祀river 最长反链

    1143: [CTSC2008]祭祀river Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  4. BZOJ-1143&&BZOJ-2718 祭祀river&&毕业旅行 最长反链(Floyed传递闭包+二分图匹配)

    蛋蛋安利的双倍经验题 1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1901 Solved: 951 ...

  5. Bzoj 2718: [Violet 4]毕业旅行 && Bzoj 1143: [CTSC2008]祭祀river 传递闭包,二分图匹配,匈牙利,bitset

    1143: [CTSC2008]祭祀river Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1878  Solved: 937[Submit][St ...

  6. 1143: [CTSC2008]祭祀river(最长反链)

    1143: [CTSC2008]祭祀river 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1143 Description: 在遥远的 ...

  7. BZOJ 2718: [Violet 4]毕业旅行( 最长反链 )

    一不小心速度就成了#1.... 这道题显然是求最长反链, 最长反链=最小链覆盖.最小链覆盖就是先做一次floyd传递闭包, 再求最小路径覆盖. 最小路径覆盖=N - 二分图最大匹配. 所以把所有点拆成 ...

  8. bzoj 1143: [CTSC2008]祭祀river / 2718: [Violet 4]毕业旅行 -- 二分图匹配

    1143: [CTSC2008]祭祀river Time Limit: 10 Sec  Memory Limit: 162 MB Description 在遥远的东方,有一个神秘的民族,自称Y族.他们 ...

  9. bzoj 1854: [Scoi2010]游戏 (并查集||二分图最大匹配)

    链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1854 写法1: 二分图最大匹配 思路:  将武器的属性对武器编号建边,因为只有10000种 ...

随机推荐

  1. latex02-LaTeX源文件的基本结构

    1.一个latex文件有且仅有一个document环境 %后表示注释 2.latex的导言区用于全局设置. 例如:title\author\date 加入空行是结构更加清晰 为了能正确的使用标题信息, ...

  2. MongoDB从环境搭建到代码编程(Window 环境)

    本人开发环境: window Server 2008 , 64位系统 服务端 MongoDB下载地址:http://www.mongodb.org/downloads  (本人己下好的在百度网盘 : ...

  3. Oracle 完全理解connect by-详细脚本-可实战

    狒狒Q971751392 未来星开发团队--狒狒(QQ:9715234) oracle树查询的最重要的就是select…start with…connect by…prior语法了.依托于该语法,我们 ...

  4. CentOS7安装Oracle 11gR2 图文详解

    注:Oracle11gR2 X64安装 一.环境准备 安装包: 1.VMware-workstation-full-11.1.0-2496824.exe 2.CentOS-7-x86_64-DVD-1 ...

  5. 虚拟现实-VR-UE4-编辑自定义Character-上下左右移动-旋转

    在上一片文章中,我创建了一个自定义的Character,但是只是有一行log显示,我使用了自己的Character,不能有任何操作,这里,我将记录我修改我的Character的过程 万事第一步,打开工 ...

  6. 望岳物业App开发过程记录

    望岳物业APP开发过程记录 ——杜冰青 1.小组讨论,决定模块功能. 2.开始做“社区活动”界面,完成主页面.分享界面.内容界面,但是分享功能暂时没有完成. 3.接着做“一键开门”界面,因为硬件设施跟 ...

  7. [整理]修改git 默认编辑器为vim

    git config --global core.editor vim

  8. 安装floodlight遇到的问题和解决

    环境:ubuntu18.04 安装floodlight先前准备:java的环境,ant. sudo apt-get install build-essential defailt-jdk ant py ...

  9. 【积累】LinqToSql复合查询结果转DataTable数据

    最近的项目用到了大量的复合查询结果用于数据源,绑定到数据控件上. 为了方便,我们把它转换成DataTable的数据源形式.请看下面的示例: 1)思考自己需要的数据,然后组合,因此创建一个新的类: // ...

  10. 【Linux】Linux修改openfiles后不生效问题?

    #次故障问题环境背景: Centos7.4物理机,升级过ssh和ntp: #一般只需要在此文件后面添加4行就行,配置后即可生效(exit再次登录即可生效),此次配置后没生效,reboot还是没生效,在 ...