Redis之ziplist数据结构
0.前言
redis初始创建hash表,有序集合,链表时, 存储结构采用一种ziplist的存储结构, 这种结构内存排列更紧密, 能提高访存性能. 本文介绍ziplist数据结构
1.ziplist存储结构
ziplist并没有定义明确的结构体, 根据存储结构我们可以定义ziplist如下, 只是进行演示使用.其中content字段存储实际的实体内容, 实体
typedef struct ziplist{
/*ziplist分配的内存大小*/
uint32_t bytes;
/*达到尾部的偏移量*/
uint32_t tail_offset;
/*存储元素实体个数*/
uint16_t length;
/*存储内容实体元素*/
unsigned char* content[];
/*尾部标识*/
unsigned char end;
}ziplist;
/*元素实体所有信息, 仅仅是描述使用, 内存中并非如此存储*/
typedef struct zlentry {
/*前一个元素长度需要空间和前一个元素长度*/
unsigned int prevrawlensize, prevrawlen;
/*元素长度需要空间和元素长度*/
unsigned int lensize, len;
/*头部长度即prevrawlensize + lensize*/
unsigned int headersize;
/*元素内容编码*/
unsigned char encoding;
/*元素实际内容*/
unsigned char *p;
}zlentry;
ziplist内存布局
|-----------|-----------|----------|---------------------------------------------------|---|
bytes offset length content {zlentry, zlentry ... ...} end
2.1 zlentry之prevrawlen编码
zlentry中prevrawlen进行了压缩编码, 如果字段小于254, 则直接用一个字节保存, 如果大于254字节, 则使用5个字节进行保存, 第一个字节固定值254, 后四个字节保存实际字段值. zipPrevEncodeLength函数是对改字段编码的函数, 我们可以通过此函数看下编码格式.
/*prevrawlen字段进行编码函数*/
static unsigned int zipPrevEncodeLength(unsigned char *p, unsigned int len) {
/*
*ZIP_BIGLEN值为254, 返回值表示len所占用的空间大小, 要么1要么5
*/
if (p == NULL) {
return (len < ZIP_BIGLEN) ? 1 : sizeof(len)+1;
} else {
/*len小于254直接用一个字节保存*/
if (len < ZIP_BIGLEN) {
p[0] = len;
return 1;
} else {
/*大于254,第一个字节赋值为254, 后四个字节保存值*/
p[0] = ZIP_BIGLEN;
memcpy(p+1,&len,sizeof(len));
memrev32ifbe(p+1);
return 1+sizeof(len);
}
}
}
2.2 zlentry之len编码
zlentry中len字段配合encoding字段进行了编码, 尽量压缩字段长度, 减少内存使用. 如果实体内容被编码成整数, 则长度默认为1, 如果实体内容被编码为字符串, 则会根据不同长度进行不同编码.编码原则是第一个字节前两个bit位标识占用空间长度, 分别有以下几种, 后面紧跟着存储实际值.
/*字符串编码标识使用了最高2bit位 */
#define ZIP_STR_06B (0 << 6) //6bit
#define ZIP_STR_14B (1 << 6) //14bit
#define ZIP_STR_32B (2 << 6) //32bit
/*zlentry中len字段进行编码过程*/
static unsigned int zipEncodeLength(unsigned char *p, unsigned char encoding, unsigned int rawlen) {
unsigned char len = 1, buf[5];
if (ZIP_IS_STR(encoding)) {
/*
*6bit可以存储, 占用空间为1个字节, 值存储在字节后6bit中.
*/
if (rawlen <= 0x3f) {
if (!p) return len;
buf[0] = ZIP_STR_06B | rawlen;
} else if (rawlen <= 0x3fff) {
len += 1;
if (!p) return len;
/*14bit可以存储, 置前两个bit位为ZIP_STR_14B标志 */
buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f);
buf[1] = rawlen & 0xff;
} else {
len += 4;
if (!p) return len;
buf[0] = ZIP_STR_32B;
buf[1] = (rawlen >> 24) & 0xff;
buf[2] = (rawlen >> 16) & 0xff;
buf[3] = (rawlen >> 8) & 0xff;
buf[4] = rawlen & 0xff;
}
} else {
/* 内容编码为整型, 长度默认为1*/
if (!p) return len;
buf[0] = encoding;
}
/* Store this length at p */
memcpy(p,buf,len);
return len;
}
2.3 zlentry之encoding和p编码
zlentry中encoding和p表示元素编码和内容, 下面分析下具体编码规则, 可以看到这里对内存节省真是到了魔性的地步. encoding是保存在len字段第一个字节中, 第一个字节最高2bit标识字符串编码, 5和6bit位标识是整数编码, 解码时直接从第一个字节中获取编码信息.
/* 整数编码标识使用了5和6bit位 */
#define ZIP_INT_16B (0xc0 | 0<<4) //16bit整数
#define ZIP_INT_32B (0xc0 | 1<<4) //32bit整数
#define ZIP_INT_64B (0xc0 | 2<<4) //64bit整数
#define ZIP_INT_24B (0xc0 | 3<<4) //24bit整数
#define ZIP_INT_8B 0xfe //8bit整数
#define ZIP_INT_IMM_MASK 0x0f
#define ZIP_INT_IMM_MIN 0xf1 /* 11110001 */
#define ZIP_INT_IMM_MAX 0xfd /* 11111101 */
static int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
long long value;
if (entrylen >= 32 || entrylen == 0) return 0;
if (string2ll((char*)entry,entrylen,&value)) {
/* 0-12之间的值, 直接在保存在了encoding字段中, 其他根据值大小, 直接设置为相应的编码*/
if (value >= 0 && value <= 12) {
*encoding = ZIP_INT_IMM_MIN+value;
} else if (value >= INT8_MIN && value <= INT8_MAX) {
*encoding = ZIP_INT_8B;
} else if (value >= INT16_MIN && value <= INT16_MAX) {
*encoding = ZIP_INT_16B;
} else if (value >= INT24_MIN && value <= INT24_MAX) {
*encoding = ZIP_INT_24B;
} else if (value >= INT32_MIN && value <= INT32_MAX) {
*encoding = ZIP_INT_32B;
} else {
*encoding = ZIP_INT_64B;
}
*v = value;
return 1;
}
return 0;
}
3.添加元素
添加元素分为两种方式,可以使用ziplistPush函数向头部或尾部追加元素, 可以使用ziplistInsert向指定位置插入元素
/*push元素, 添加到ziplist头部或者添加到尾部*/
unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
unsigned char *p;
p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
return __ziplistInsert(zl,p,s,slen);
}
/* 插入元素, 向指定的位置p插入元素*/
unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
return __ziplistInsert(zl,p,s,slen);
}
/* 向指定位置p插入元素 */
static unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen;
unsigned int prevlensize, prevlen = 0;
size_t offset;
int nextdiff = 0;
unsigned char encoding = 0;
long long value = 123456789; /* initialized to avoid warning. Using a value
that is easy to see if for some reason
we use it uninitialized. */
zlentry tail;
/* 判断是否是在尾部插入*/
if (p[0] != ZIP_END) {
/*取出prevlensize和prevlen值, 编码格式上面已经讲过*/
ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
} else {
/*取出尾部最后一个元素长度和空间, 后面使用*/
unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
if (ptail[0] != ZIP_END) {
prevlen = zipRawEntryLength(ptail);
}
}
/* 尝试对值进行整数编码*/
if (zipTryEncoding(s,slen,&value,&encoding)) {
/* 根据编码类型获取编码长度 */
reqlen = zipIntSize(encoding);
} else {
/* 字符串直接设置为字符串长度 */
reqlen = slen;
}
/* reqlen是元素需要分配内存空间大小, 需要加上前置元素长度占用长度, 当前元素长度字段*/
reqlen += zipPrevEncodeLength(NULL,prevlen);
reqlen += zipEncodeLength(NULL,encoding,slen);
/* 插入位置不是最后位置, 则需要计算出下一个元素保存本元素prevlen字段空间是否足够, 不够时计算出欠缺的差值 */
nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
/* realloc重新分配内存 */
offset = p-zl;
zl = ziplistResize(zl,curlen+reqlen+nextdiff);
p = zl+offset;
/*更新tailoffset字段值*/
if (p[0] != ZIP_END) {
/* 移动p原有位置和后面的内容到新的位置 */
memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);
/* 修改下一个元素中保存待插入元素的长度prevlen字段*/
zipPrevEncodeLength(p+reqlen,reqlen);
/* 更新尾部位置字段 */
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);
/* 假如p后面存在元素, 则需要将尾部位置增加nextdiff */
tail = zipEntry(p+reqlen);
if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
}
} else {
/* This element will be the new tail. */
ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
}
/*
*nextdiff值非0, 说明下一个元素需要扩展空间存放prevlen字段, 由于下一个元素空间变大, 有可能引起下下一个元素空间需要扩展, 下面函数检测后面元素, 并在需要时重置元素prevlen长度
*/
if (nextdiff != 0) {
offset = p-zl;
zl = __ziplistCascadeUpdate(zl,p+reqlen);
p = zl+offset;
}
/* 操作了这么多, 终于到了向新元素中写入值, 依据不同编码进行写入 */
p += zipPrevEncodeLength(p,prevlen);
p += zipEncodeLength(p,encoding,slen);
if (ZIP_IS_STR(encoding)) {
memcpy(p,s,slen);
} else {
zipSaveInteger(p,value,encoding);
}
ZIPLIST_INCR_LENGTH(zl,1);
return zl;
}
4.查找元素
查找元素直接从指定位置开始,一个一个查找, 直到找到或者到达尾部.
/* 从位置p开始查找元素, skip表示每查找一次跳过的元素个数*/
unsigned char *ziplistFind(unsigned char *p, unsigned char *vstr, unsigned int vlen, unsigned int skip) {
int skipcnt = 0;
unsigned char vencoding = 0;
long long vll = 0;
while (p[0] != ZIP_END) {
unsigned int prevlensize, encoding, lensize, len;
unsigned char *q;
/*取出元素中元素内容放入q中*/
ZIP_DECODE_PREVLENSIZE(p, prevlensize);
ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
q = p + prevlensize + lensize;
if (skipcnt == 0) {
/* 如果元素是字符串编码, */
if (ZIP_IS_STR(encoding)) {
if (len == vlen && memcmp(q, vstr, vlen) == 0) {
return p;
}
} else {
/*元素是整数编码, 按照整型进行比较*/
if (vencoding == 0) {
if (!zipTryEncoding(vstr, vlen, &vll, &vencoding)) {
/* 如果无法进行整数编码, 则直接赋值为UCHAR_MAX以后不会在进行整数类型比较*/
vencoding = UCHAR_MAX;
}
assert(vencoding);
}
/*如果待查元素是整型编码, 直接进行比较*/
if (vencoding != UCHAR_MAX) {
long long ll = zipLoadInteger(q, encoding);
if (ll == vll) {
return p;
}
}
}
/* 重置跳过元素值 */
skipcnt = skip;
} else {
/* Skip entry */
skipcnt--;
}
/* 移动到下个元素位置 */
p = q + len;
}
return NULL;
}
5.删除元素
删除元素主要通过ziplistDelete和ziplistDeleteRange来进行
/* 删除一个元素*/
unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) {
size_t offset = *p-zl;
zl = __ziplistDelete(zl,*p,1);
*p = zl+offset;
return zl;
}
/* 删除一段数据 */
unsigned char *ziplistDeleteRange(unsigned char *zl, unsigned int index, unsigned int num) {
/*根据索引查找出元素位置,下面介绍该函数*/
unsigned char *p = ziplistIndex(zl,index);
return (p == NULL) ? zl : __ziplistDelete(zl,p,num);
}
unsigned char *ziplistIndex(unsigned char *zl, int index) {
unsigned char *p;
unsigned int prevlensize, prevlen = 0;
/*传入索引与零比较,比零大则从头部开始查找,比零小则从尾部开始查找*/
if (index < 0) {
index = (-index)-1;
p = ZIPLIST_ENTRY_TAIL(zl);
if (p[0] != ZIP_END) {
/*不断取出prevlen值,从后向前开始查找*/
ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
while (prevlen > 0 && index--) {
p -= prevlen;
ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
}
}
} else {
p = ZIPLIST_ENTRY_HEAD(zl);
while (p[0] != ZIP_END && index--) {
p += zipRawEntryLength(p);
}
}
return (p[0] == ZIP_END || index > 0) ? NULL : p;
}
/* 真正执行删除操作函数*/
static unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) {
unsigned int i, totlen, deleted = 0;
size_t offset;
int nextdiff = 0;
zlentry first, tail;
first = zipEntry(p);
for (i = 0; p[0] != ZIP_END && i < num; i++) {
p += zipRawEntryLength(p);
deleted++;
}
totlen = p-first.p;
if (totlen > 0) {
if (p[0] != ZIP_END) {
/* 如果删除元素没有到尾部,则需要重新计算删除元素后面元素中prevlen字段占用空间,类似插入时进行的操作 */
nextdiff = zipPrevLenByteDiff(p,first.prevrawlen);
p -= nextdiff;
zipPrevEncodeLength(p,first.prevrawlen);
/* 重置尾部偏移量 */
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))-totlen);
/* 如果删除元素没有到尾部,尾部偏移量需要加上nextdiff偏移量 */
tail = zipEntry(p);
if (p[tail.headersize+tail.len] != ZIP_END) {
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
}
/* 移动元素至删除元素位置*/
memmove(first.p,p,
intrev32ifbe(ZIPLIST_BYTES(zl))-(p-zl)-1);
} else {
/* 如果删除的元素到达尾部,则不需要移动*/
ZIPLIST_TAIL_OFFSET(zl) =
intrev32ifbe((first.p-zl)-first.prevrawlen);
}
/* 重置ziplist空间 */
offset = first.p-zl;
zl = ziplistResize(zl, intrev32ifbe(ZIPLIST_BYTES(zl))-totlen+nextdiff);
ZIPLIST_INCR_LENGTH(zl,-deleted);
p = zl+offset;
/* 同样和插入时一样,需要遍历检测删除元素后面的元素prevlen空间是否足够,不足时进行扩展*/
if (nextdiff != 0)
zl = __ziplistCascadeUpdate(zl,p);
}
return zl;
}
Redis之ziplist数据结构的更多相关文章
- Redis之Hash数据结构
0.前言 redis是KV型的内存数据库, 数据库存储的核心就是Hash表, 我们执行select命令选择一个存储的db之后, 所有的操作都是以hash表为基础的, 下面会分析下redis的hash数 ...
- Redis 5种数据结构使用及注意事项
1优缺点 非常非常的快,有测评说比Memcached还快(当大家都是单CPU的时候),而且是无短板的快,读写都一般的快,所有API都差不多快,也没有MySQL Cluster.MongoDB那样更新同 ...
- 深入理解Redis:底层数据结构
简介 redis[1]是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorte ...
- Redis(二)--- Redis的底层数据结构
1.Redis的数据结构 Redis 的底层数据结构包含简单的动态字符串(SDS).链表.字典.压缩列表.整数集合等等:五大数据类型(数据对象)都是由一种或几种数结构构成. 在命令行中可以使用 OBJ ...
- Redis之ziplist源码分析
一.ziplist简介 从上一篇分析我们知道quicklist的底层存储使用了ziplist(压缩列表),由于压缩列表本身也有不少内容,所以重新开了一篇,在正式源码之前,还是先看下ziplist的特点 ...
- 蜻蜓点水说说Redis的ziplist的奥秘
本篇博客参考: Redis 深度历险:核心原理与应用实践 Redis内部数据结构详解(4)--ziplist Redis的压缩列表ZipList 上篇博客中,我给大家蜻蜓点水般的介绍了Redis中SD ...
- 【Redis】内部数据结构自顶向下梳理
本博客将顺着自顶向下的思路梳理一下Redis的数据结构体系,从数据库到对象体系,再到底层数据结构.我将基于我的一个项目的代码来进行介绍:daredis.该项目中,使用Java实现了Redis中所有的数 ...
- redis 五种数据结构详解(string,list,set,zset,hash)
redis 五种数据结构详解(string,list,set,zset,hash) Redis不仅仅支持简单的key-value类型的数据,同时还提供list,set,zset,hash等数据结构的存 ...
- (2)redis的基本数据结构是动态数组
redis的基本数据结构是动态数组 一.c语言动态数组 先看下一般的动态数组结构 struct MyData { int nLen; ]; }; 这是个广泛使用的常见技巧,常用来构成缓冲区.比起指针, ...
随机推荐
- Codeforces #430 Div2 C
#430 Div2 C 题意 给出一棵带点权的树,每一个节点的答案为从当前节点到根节点路径上所有节点权值的最大公因子(在求最大共因子的时候可以选择把这条路径上的任意一点的权值置为0).对于每一个节点单 ...
- [BZOJ 2425] 计数
Link: BZOJ 2425 传送门 Solution: 其实就是利用数位$dp$的思想来暴力计数的一道题目 如果答案有$dgt$位,可以类似 [BZOJ 1833] 先计算出1至$dgt-1$位的 ...
- []ARC099
C:普及组难度的题 D:令$S(n)$表示$n$的数位和,一个数$n$是Snuke number当且仅当对所有$m\gt n$有$\frac n{S(n)}\leq\frac m{S(m)}$,求出前 ...
- [CF441E]Valera and Number
题意:给定$x,k,p$和一份伪代码,伪代码大致是循环$k$次,每次有$p\%$的概率把$x$乘$2$,有$(100-p)\%$的概率把$x$加$1$,问最后在二进制下$x$的末尾期望$0$个数 鸽了 ...
- 【贪心】【DFS】Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals) C. Andryusha and Colored Balloons
从任意点出发,贪心染色即可. #include<cstdio> #include<algorithm> using namespace std; int v[200010< ...
- 1.1(java学习笔记) 面向过程与面向对象
面向过程思考时,我们会先思考具体的步骤,第一步走什么,第二步做什么. 比如电脑新建文件夹,第一步:打开电脑 第二步:按下鼠标右键. 第三步:找到新建选项 第四步:点击新建选项下的文件夹 c语言是典型的 ...
- kill -3 获取threaddump信息
有些Java应用服务器是在控制台上运行,如Weblogic,为了方便获取threaddump信息,在weblogic启动的时候,会将其标准输出重 定向到一个文件,用"nohup ./star ...
- 正版greenvpn
短网址 http://jsq.re(建议收藏,长期有效)长网址 https://www.greenjsq.me/网址更新页面 http://www.greenvpn.site
- 【java】处理时间字段 在数据库查询的时候只想要年月日,不想要时分秒 ,java中设置时间类型为年月日,java中设置Date中的时分秒为00.00.000
JDK8 中最简单的处理方式: @Test public void dateTest(){ Date now = new Date(); System.out.println(now); // jav ...
- httpd 服务的两个节点的HA
实验目的是:实现两个节点的http和nfs服务的HA集群. 实现条件:准备两个节点.node1,node2作为HA1,HA2提供集群服务.在node1和node2分别按照httpd服务.挂载nfs服务 ...