[UOJ #51]【UR #4】元旦三侠的游戏
题目大意:给$n$,一个游戏,给$a,b$,两个人,每人每次可以把$a$或$b$加一,要求$a^b\leqslant n$,无法操作人输。有$m$次询问,每次给你$a,b$,问先手可否必胜
题解:令$f_{i,j}$表示$a=i,b=j$使得胜负,$f_{i,j}$可由$f_{i+1,j},f_{i,j+1}$推出,但这样会$MLE(b=1)$,发现若$a>\sqrt n$,可以直接奇偶性判断。
卡点:原来写的东西不知道为什么锅,换成题解的方式就过了
C++ Code:
#include <cstdio>
#define maxn 32010
const int sq = 32000;
int n, m;
int exp[maxn];
bool f[maxn][31];
int main() {
scanf("%d%d", &n, &m);
exp[1] = n;
for (int i = 2; i <= sq; i++) {
if (i > n) exp[i] = 0;
else {
long long S = i, j;
for (j = 2; (S *= i) <= n; j++) ;
exp[i] = j - 1;
}
}
f[sq + 1][1] = !(n - sq - 1 & 1);
for (int i = sq; i > 1; i--) {
for (int j = exp[i]; j; j--) {
f[i][j] = !(f[i][j + 1] || f[i + 1][j]);
}
}
while (m --> 0) {
int a, b;
scanf("%d%d", &a, &b);
if (a > sq) puts((n - a & 1) ? "Yes" : "No");
else puts(f[a][b] ? "No" : "Yes");
}
return 0;
}
[UOJ #51]【UR #4】元旦三侠的游戏的更多相关文章
- 【uoj#51】[UR #4]元旦三侠的游戏 博弈论+dp
题目描述 给出 $n$ 和 $m$ ,$m$ 次询问.每次询问给出 $a$ 和 $b$ ,两人轮流选择:将 $a$ 加一或者将 $b$ 加一,但必须保证 $a^b\le n$ ,无法操作者输,问先手是 ...
- 【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)
[UOJ#51][UR #4]元旦三侠的游戏(博弈论) 题面 UOJ 题解 考虑暴力,\(sg[a][b]\)记录\(sg\)函数值,显然可以从\(sg[a+1][b]\)和\(sg[a][b+1]\ ...
- [UOJ Round#4 A] [#51] 元旦三侠的游戏 【容斥 + 递推】
题目链接:UOJ - 51 据说这题与 CF 39E 类似. 题目分析 一看题目描述,啊,博弈论,不会!等待爆零吧... 这时,XCJ神犇拯救了我,他说,这题可以直接搜啊. 注意!是用记忆化搜索,状态 ...
- 【UR #4】元旦三侠的游戏(博弈论+记忆化)
http://uoj.ac/contest/6/problem/51 题意:给m($m \le 10^5$)个询问,每次给出$a, b(a^b \le n, n \le 10^9)$,对于每一组$a, ...
- A. 【UR #4】元旦三侠的游戏
题解: 挺水的吧 会发现当b不等于1的时候,状态只有sigma i x^(1/i) 显然这东西很小.. 然后我们会发现每个点向两个点动 定义必胜点和必败点 当一个点有一条边连向必败点 那么它就是必胜点 ...
- uoj51 元旦三侠的游戏
题意:询问a,b,n.每次可以a+1或b+1,保证a^b<=n,不能操作者输.问先手是否赢? n<=1e9. 标程: #include<cstdio> #include< ...
- UOJ.52.[UR #4]元旦激光炮(交互 思路)
题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...
- UOJ 【UR #5】怎样跑得更快
[UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...
- UOJ #22 UR #1 外星人
LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...
随机推荐
- @staticmethod怎么用?
早上起来写个小demo, 类中写了个方法, pycharm给这个方法加上了莫名其妙的波浪线, 对于一个有代码洁癖的人来说, 完全不能忍, 来看看为什么. 问题重现 pycharm的提示 上面说了, 这 ...
- 46.VUE学习之--组件之使用动态组件灵活设置页面布局
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Hadoop(10)-HDFS的DataNode详解
1.DataNode工作机制 1)一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳. 2)DataNode启 ...
- springboot学习(2)
WebMvcConfigurerAdapter 在springboot2.0及以上版本过时问题 WebMvcConfigurerAdapter已经过时,替代方案: 1 实现 WebMvcConfigu ...
- 用pathon实现计算器功能
实现计算类似公式的计算器程序1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * 568/14 )) - (-4*3)/ (16-3* ...
- django之单表查询
一.创建表 1.创建模型: 创建名为book的app,在book下的models.py中创建模型: from django.db import models # Create your models ...
- Java面试题集合
1.Java的HashMap是如何工作的? HashMap是一个针对数据结构的键值,每个键都会有相应的值,关键是识别这样的值. HashMap 基于 hashing 原理,我们通过 put ()和 g ...
- SLAM中的常识与经验
双目矫正 双目通常事先是通过畸变矫正标定的,而RGB-D和单目则并不一定完成了矫正. 因此,对于RGB-D和单目获取的图像,在提取特征点之后,需要矫正,而双目则可以省略这一过程. 词袋模型反向索引 D ...
- uwsgi配置文件
[uwsgi] http = :9000 #the local unix socket file than commnuincate to Nginx #socket端口这个用作nginx与其通讯 s ...
- Mysql自学笔记
SQL(strucut query language) DDL (数据库定义语言)DML (数据库操作语言)DCL (数据库的控制语言)DTL (数据库的高级语言)查看版本的函数select vers ...