题目描述

您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:
1.查询k在区间内的排名
2.查询区间内排名为k的值
3.修改某一位值上的数值
4.查询k在区间内的前驱(前驱定义为小于x,且最大的数)
5.查询k在区间内的后继(后继定义为大于x,且最小的数)

输入

第一行两个数 n,m 表示长度为n的有序序列和m个操作
第二行有n个数,表示有序序列
下面有m行,opt表示操作标号
若opt=1 则为操作1,之后有三个数l,r,k 表示查询k在区间[l,r]的排名
若opt=2 则为操作2,之后有三个数l,r,k 表示查询区间[l,r]内排名为k的数
若opt=3 则为操作3,之后有两个数pos,k 表示将pos位置的数修改为k
若opt=4 则为操作4,之后有三个数l,r,k 表示查询区间[l,r]内k的前驱
若opt=5 则为操作5,之后有三个数l,r,k 表示查询区间[l,r]内k的后继

输出

对于操作1,2,4,5各输出一行,表示查询结果

样例输入

9 6
4 2 2 1 9 4 0 1 1
2 1 4 3
3 4 10
2 1 4 3
1 2 5 9
4 3 9 5
5 2 8 5

样例输出

2
4
3
4
9


题解

树套树,外层线段树内层Treap

对于外层线段树的每个节点,在此之上建立一棵Treap。

这样用外层线段树维护区间,内层Treap维护排名,能够轻松处理出询问1、3、4、5。

具体地,1操作在线段树中不断查找区间,在线段树节点对应的Treap中查找有多少个比k小的,类似于普通线段树的区间查询。4、5操作同理。

3操作在线段树中不断查找区间,在线段树节点对应的Treap中删除原数,添加新数,类似于普通线段树的单点修改。

然而仅仅是这样并不能处理出2操作。

考虑到查某排名的数很不容易,但查某数的排名比较简单(操作1),于是我们可以二分答案,并用操作1的方法判断即可。

1、3、4、5操作时间复杂度O(log^2n),2操作时间复杂度O(log^3n)。

常数已经优化到比较小了,亲测在某些卡时间的oj上可以过。

#include <cstdio>
#include <cstdlib>
#include <algorithm>
#define N 200010
#define M 4000010
#define inf 0x7fffffff
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
using namespace std;
int n , v[N] , root[N] , w[M] , cnt[M] , si[M] , ls[M] , rs[M] , rnd[M] , tot;
void pushup(int k)
{
si[k] = si[ls[k]] + si[rs[k]] + cnt[k];
}
void zig(int &k)
{
int t = ls[k];
ls[k] = rs[t] , rs[t] = k , si[t] = si[k] , pushup(k) , k = t;
}
void zag(int &k)
{
int t = rs[k];
rs[k] = ls[t] , ls[t] = k , si[t] = si[k] , pushup(k) , k = t;
}
void ins(int &k , int a)
{
if(!k)
{
k = ++tot , w[k] = a , cnt[k] = si[k] = 1 , rnd[k] = rand();
return;
}
si[k] ++ ;
if(a == w[k]) cnt[k] ++ ;
else if(a < w[k])
{
ins(ls[k] , a);
if(rnd[ls[k]] < rnd[k]) zig(k);
}
else
{
ins(rs[k] , a);
if(rnd[rs[k]] < rnd[k]) zag(k);
}
}
void del(int &k , int a)
{
if(a == w[k])
{
if(cnt[k] > 1) cnt[k] -- , si[k] -- ;
else if(!ls[k] || !rs[k]) k = ls[k] + rs[k];
else if(rnd[ls[k]] < rnd[rs[k]]) zig(k) , del(k , a);
else zag(k) , del(k , a);
}
else if(a < w[k]) del(ls[k] , a) , si[k] -- ;
else del(rs[k] , a) , si[k] -- ;
}
int getless(int k , int a)
{
if(!k) return 0;
if(a <= w[k]) return getless(ls[k] , a);
else return getless(rs[k] , a) + si[ls[k]] + cnt[k];
}
int getpro(int k , int a)
{
if(!k) return 0;
if(a <= w[k]) return getpro(ls[k] , a);
else return max(w[k] , getpro(rs[k] , a));
}
int getsub(int k , int a)
{
if(!k) return inf;
if(a >= w[k]) return getsub(rs[k] , a);
else return min(w[k] , getsub(ls[k] , a));
}
void build(int l , int r , int x)
{
int i , mid = (l + r) >> 1;
for(i = l ; i <= r ; i ++ ) ins(root[x] , v[i]);
if(l == r) return;
build(lson) , build(rson);
}
void update(int p , int a , int l , int r , int x)
{
del(root[x] , v[p]) , ins(root[x] , a);
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) update(p , a , lson);
else update(p , a , rson);
}
int queryless(int b , int e , int a , int l , int r , int x)
{
if(b <= l && r <= e) return getless(root[x] , a);
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid) ans += queryless(b , e , a , lson);
if(e > mid) ans += queryless(b , e , a , rson);
return ans;
}
int querypro(int b , int e , int a , int l , int r , int x)
{
if(b <= l && r <= e) return getpro(root[x] , a);
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid) ans = max(ans , querypro(b , e , a , lson));
if(e > mid) ans = max(ans , querypro(b , e , a , rson));
return ans;
}
int querysub(int b , int e , int a , int l , int r , int x)
{
if(b <= l && r <= e) return getsub(root[x] , a);
int mid = (l + r) >> 1 , ans = inf;
if(b <= mid) ans = min(ans , querysub(b , e , a , lson));
if(e > mid) ans = min(ans , querysub(b , e , a , rson));
return ans;
}
int solvenum(int b , int e , int a)
{
int l = querysub(b , e , -1 , 1 , n , 1) , r = querypro(b , e , inf , 1 , n , 1) , mid , ans = 0;
while(l <= r)
{
mid = (l + r) >> 1;
if(queryless(b , e , mid , 1 , n , 1) + 1 <= a) ans = mid , l = mid + 1;
else r = mid - 1;
}
return ans;
}
int main()
{
int m , i , opt , x , y , z;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &v[i]);
build(1 , n , 1);
while(m -- )
{
scanf("%d%d%d" , &opt , &x , &y);
if(opt != 3) scanf("%d" , &z);
switch(opt)
{
case 1: printf("%d\n" , queryless(x , y , z , 1 , n , 1) + 1); break;
case 2: printf("%d\n" , solvenum(x , y , z)); break;
case 3: update(x , y , 1 , n , 1) , v[x] = y; break;
case 4: printf("%d\n" , querypro(x , y , z , 1 , n , 1)); break;
default: printf("%d\n" , querysub(x , y , z , 1 , n , 1));
}
}
return 0;
}

【bzoj3196】Tyvj 1730 二逼平衡树 线段树套Treap的更多相关文章

  1. [bzoj3196][Tyvj 1730][二逼平衡树] (线段树套treap)

    Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的数值 4.查询k在 ...

  2. BZOJ - 3196 Tyvj 1730 二逼平衡树 (线段树套treap)

    题目链接 区间线段树套treap,空间复杂度$O(nlogn)$,时间复杂度除了查询区间k大是$O(log^3n)$以外都是$O(log^2n)$的. (据说线段树套线段树.树状数组套线段树也能过?) ...

  3. [bzoj3196]Tyvj 1730 二逼平衡树——线段树套平衡树

    题目 Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的数值 4.查 ...

  4. bzoj 3196 && luogu 3380 JoyOI 1730 二逼平衡树 (线段树套Treap)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3196 题面; 3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Se ...

  5. bzoj3196: Tyvj 1730 二逼平衡树 树套树

    地址:http://www.lydsy.com/JudgeOnline/problem.php?id=3196 题目: 3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec ...

  6. 【线段树套平衡树】【pb_ds】bzoj3196 Tyvj 1730 二逼平衡树

    线段树套pb_ds里的平衡树,在洛谷OJ上测试,后三个测试点TLE #include<cstdio> #include<algorithm> #include<ext/p ...

  7. BZOJ3196二逼平衡树——线段树套平衡树(treap)

    此为平衡树系列最后一道:二逼平衡树您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查询 ...

  8. 【BZOJ 3196】二逼平衡树 线段树套splay 模板题

    我写的是线段树套splay,网上很多人写的都是套treap,然而本蒟蒻并不会treap 奉上sth神犇的模板: //bzoj3196 二逼平衡树,支持修改某个点的值,查询区间第k小值,查询区间某个值排 ...

  9. BZOJ3196: Tyvj 1730 二逼平衡树

    传送门 主席树的常数蜜汁优越,在BZOJ上跑了rnk1. 做法很简单,主席树套BIT. 1-3做法很简单,第四个和第五个做法转换成前两个就行了. //BZOJ 3196 //by Cydiater / ...

随机推荐

  1. python核心编程2 第七章 练习

    7-4. 建立字典. 给定两个长度相同的列表,比如说,列表[1, 2, 3,...]和['abc', 'def','ghi',...],用这两个列表里的所有数据组成一个字典,像这样:{1:'abc', ...

  2. linux系统之-vi编辑器

    在linux系统使用中,掌握熟练的vi编辑器,可以提高linux工作效率.那么vi编辑器的使用方法有哪些呢? vi编辑器可在绝大部分linux发行版中使用. Vi编辑器的作用:创建或修改文件:维护li ...

  3. Spring常见面试题

    本文是通过收集网上各种面试指南题目及答案然后经过整理归纳而来,仅仅是为了方便以后回顾,无意冒犯各位原创作者. Spring框架 1. 什么是Spring? Spring 是个java企业级应用的开源开 ...

  4. Hadoop(21)-数据清洗(ELT)简单版

    有一个诸如这样的log日志 去除长度不合法,并且状态码不正确的记录 LogBean package com.nty.elt; /** * author nty * date time 2018-12- ...

  5. 我是一个MySQL小白

    我是一个MySQL小白 第一回早起装扮 “mysql,Oracle,SQL-SERVER你们三个 起床没?”,清晨七点多师父喊道. “师父,我(mysql)哪敢睡觉呀,我还在查询表呢,有客户的密码忘记 ...

  6. Hive初识(四)

    Hive本质上是一个数据仓库,但不存储数据(只存储元数据(metadata),Hive中的元数据包括表的名字,表的列和分区及分区及其属性,表的属性(是否为外部表等),表的数据所在目录等),用户可以借助 ...

  7. python内置常用高阶函数(列出了5个常用的)

    原文使用的是python2,现修改为python3,全部都实际输出过,可以运行. 引用自:http://www.cnblogs.com/duyaya/p/8562898.html https://bl ...

  8. ruby Dir类

    类方法 1. Dir[pat]    Dir::glob( pat) 返回一个数组,包含与指定的通配符模式 pat 匹配的文件名: * - 匹配包含 null 字符串的任意字符串 ** - 递归地匹配 ...

  9. CPU计算密集型和IO密集型

    CPU计算密集型和IO密集型 第一种任务的类型是计算密集型任务,其特点是要进行大量的计算,消耗CPU资源,比如计算圆周率.对视频进行高清解码等等,全靠CPU的运算能力.这种计算密集型任务虽然也可以用多 ...

  10. 数据库 MySQL part1

    数据库介绍 数据库(database,DB)是指长期存储在计算机内的,有组织,可共享的数据的集合.数据库中的数据按一定的数学模型组织.描述和存储,具有较小的冗余,较高的数据独立性和易扩展性,并可为各种 ...