【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp
题目描述
n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈。问最终栈中元素个数的期望是多少。
输入
一行一个正整数 n 。
输出
一行一个实数,表示期望剩下的人数,四舍五入保留三位小数。
样例输入
10
样例输出
4.168
题解
概率期望dp
显然任何时刻栈中的元素自底至顶一定是若干个0+若干个1。
但是如果设状态$p[i][j][k]$表示前$i$次操作,栈中$j$个0,$k$个1的概率,复杂度是$O(n^3)$的,显然会TLE。
注意到$0$的个数对状态转移是没有影响的,而期望在任何时刻都具有可加性,因此可以设$f[i][j]$表示前$i$次操作,栈中$j$个1的期望元素个数。
那么直接考虑新加入一个是0还是1,看一下长度是增加还是减少即可。
这里有一个问题:每次增加或减少的长度是多少?由于我们设的是总情况的期望,而期望等于 概率*权值 ,这种情况的权值为1,因此期望值就是这种情况的概率。
所以还需要维护一个$p[i][j]$表示前$i$次操作,栈中$j$个1的概率。每次使用概率转移期望即可。
时间复杂度$O(n^2)$
#include <cstdio>
#define N 2010
double p[N][N] , f[N][N];
int main()
{
int n , i , j;
double ans = 0;
scanf("%d" , &n) , p[0][0] = 1;
for(i = 0 ; i < n ; i ++ )
{
p[i + 1][1] += p[i][0] / 2 , f[i + 1][1] += (f[i][0] + p[i][0]) / 2;
p[i + 1][0] += p[i][0] / 2 , f[i + 1][0] += (f[i][0] + p[i][0]) / 2;
for(j = 1 ; j < n ; j ++ )
{
p[i + 1][j + 1] += p[i][j] / 2 , f[i + 1][j + 1] += (f[i][j] + p[i][j]) / 2;
p[i + 1][j - 1] += p[i][j] / 2 , f[i + 1][j - 1] += (f[i][j] - p[i][j]) / 2;
}
}
for(i = 0 ; i <= n ; i ++ ) ans += f[n][i];
printf("%.3lf\n" , ans);
return 0;
}
【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp的更多相关文章
- LibreOJ #6191. 「美团 CodeM 复赛」配对游戏
二次联通门 : LibreOJ #6191. 「美团 CodeM 复赛」配对游戏 /* LibreOJ #6191. 「美团 CodeM 复赛」配对游戏 概率dp */ #include <cs ...
- 【loj6191】「美团 CodeM 复赛」配对游戏
题目 显然期望dp. 简单想法: f[i][j]表示前i个人中向右看并且没有被消除的人数的概率 如果第i+1个人是向右,$f[i+1][j+1]=f[i][j]/2$ 如果第i+1个人是向左,$f[i ...
- loj #6191. 「美团 CodeM 复赛」配对游戏 期望dp
题意:有一个栈,随机插入 $n$ 次 $0$/$1$ 如果栈顶是 $1$,然后插入 $0$,则将这两个元素都弹出,否则,插入栈顶. 求:$n$ 次操作后栈中期望的元素个数. 我们发现,按照上述弹栈方式 ...
- LOJ #6192. 「美团 CodeM 复赛」城市网络 (树上倍增)
#6192. 「美团 CodeM 复赛」城市网络 内存限制:64 MiB 时间限制:500 ms 标准输入输出 题目描述 有一个树状的城市网络(即 nnn 个城市由 n−1n-1n−1 条道路连接 ...
- LibreOJ #6192. 「美团 CodeM 复赛」城市网络
#6192. 「美团 CodeM 复赛」城市网络 内存限制:64 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: sqc 提交提交记录统计讨论测试数据 题目描 ...
- 「美团 CodeM 复赛」城市网络
题目链接 题意分析 首先 \([u,v]\)在树上是一条深度递增的链 那么我们可以使用倍增找 \(x\)的祖先当中深度最大的值大于\(x\)的点 然后维护一个\(pre\) 重新建树 这样从\(x\) ...
- [LOJ6191][CodeM]配对游戏(概率期望DP)
n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 首先容易想到用概率算期望,p[i][j][k]表示已加入i个数,1有j个,总长为 ...
- 美团 CodeM 复赛」城市网络
美团 CodeM 复赛」城市网络 内存限制:64 MiB时间限制:500 ms标准输入输出 题目描述 有一个树状的城市网络(即 nnn 个城市由 n−1n-1n−1 条道路连接的连通图),首都为 11 ...
- [LOJ 6213]「美团 CodeM 决赛」radar
[LOJ 6213]「美团 CodeM 决赛」radar 题意 给定 \(n\) 个横坐标 \(x_i\) , 为它们选择一个不超过 \(y_i\) 的纵坐标 \(h_i\), 产生 \(c_ih_i ...
随机推荐
- JSP/Servlet开发——第一章 动态网页基础
1.动态网页:在服务端运行的使用程序语言设计的交互网页 : ●动态网站并不是指具有动画功能的网站,而是指网站内容可根据不同情况动态变更的网站(股票网站),一般情况下动态网站通过数据库进行架构. ●动态 ...
- 【vlan-给予mac地址认证】
根据项目需求搭建好如下的路由和交换拓扑图: 1:用pc1 ping pc2 使交换机捕捉到4台pc及的 mac地址 查看交换机学习到的mac地址情况 2:配置交换机和pc机之间的接口,根pc机的ma ...
- phpredis命令
<?php //redis //检查一个扩展是否已经加载.大小写不敏感. if (!function_exists('redis')) { echo '不支持 redis'; return ; ...
- Hadoop(11)-MapReduce概述和简单实操
1.MapReduce的定义 2.MapReduce的优缺点 优点 缺点 3.MapReduce的核心思想 4.MapReduce进程 5.常用数据序列化类型 6.MapReduce的编程规范 用户编 ...
- 嵌入式框架Zorb Framework搭建七:任务的实现
我是卓波,我是一名嵌入式工程师,我万万没想到我会在这里跟大家吹牛皮. 嵌入式框架Zorb Framework搭建过程 嵌入式框架Zorb Framework搭建一:嵌入式环境搭建.调试输出和建立时间系 ...
- ULINE(插入水平线)
WRITE 'This is Underlined'. ULINE. 输出结果: This is Underlined. ———————————————————
- Python正则表达式中的re.S,re.M,re.I的作用
正则表达式可以包含一些可选标志修饰符来控制匹配的模式.修饰符被指定为一个可选的标志.多个标志可以通过按位 OR(|) 它们来指定.如 re.I | re.M 被设置成 I 和 M 标志: 修饰符 描述 ...
- C++11中Lambda的使用
Lambda functions: Constructs a closure, an unnamed function object capable of capturing variables in ...
- 开启TCP BBR拥塞控制算法
原文来自:https://github.com/iMeiji/shadowsocks_install/wiki/%E5%BC%80%E5%90%AFTCP-BBR%E6%8B%A5%E5%A1%9E% ...
- SXOI2018游记
day0 动身去太原.太原五中虽然挺小的但是很好看啊qwq(进门口一个"通天堂"(逃 试机.似乎看到了__stdcall!!然而没敢去认orz.linux选手似乎是9个.准考证(一 ...