[BZOJ5462][APIO2018]新家(线段树+堆)
其实这个题第一反应一定是线段树分治,但是这样反而更难考虑了(实际上是可做的但很难想到),可见即使看上去最贴切的算法也未必能有效果。
考虑这个DS题,没有什么模型的转化,可能用到的无非就是线段树、平衡树和堆。
首先,显然地,将每个商店拆成出现和消失两个事件,然后按时间一次处理。接下来很容易想到二分,于是每次询问的就是[x-mid,x+mid]中是否包含了所有种类的商店。
考虑如何快速回答询问,我们在+inf处先插入所有种类的商店,并记录每个商店的同种类型的前驱(就是上一个同类型的商店在哪里)。
注意到,如果某种商店在[x-mid,x+mid]中没有出现,则必然有(x+mid,+inf)中的所有这种商店的前驱必然都小于x-mid。
问题再次转化为,实时更新每个商店的前驱,以及询问一个后缀最小值。
第一个操作,我们对每种商店都开一个set即可。第二个操作则是线段树基本操作,可能同坐标上有多个值,这个用可删除堆支持即可。
这样复杂度是两个log的,但往往线段树和二分可以合并。如果找到最大的i满足[i,+inf)的最小前驱mn,则mn+i<=2*x。
线段树上二分,于是复杂度就可以做到一个log了。
#include<set>
#include<queue>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define lson ls[x],L,mid
#define rson rs[x],mid+1,R
#define Root rt,0,inf
#define rep(i,l,r) for (int i=(l),_=(r); i<=_; i++)
using namespace std; const int M=,N=M*,inf=0x3f3f3f3f;
multiset<int>S[M];
int n,k,q,m,x,y,l,t,a,b,cnt,tot,id,rt,ans[M],pos[N],ls[N],rs[N],Mn[N];
struct P{ int op,x,t,k; bool operator <(const P &b)const{ return t!=b.t ? t<b.t : op>b.op; } }w[M*];
struct H{
priority_queue<int,vector<int>,greater<int> >Q1,Q2;
int size(){ return Q1.size()-Q2.size(); }
void push(int x){ Q1.push(x); }
void erase(int x){ Q2.push(x); }
int top(){ while (Q2.size() && Q1.top()==Q2.top()) Q1.pop(),Q2.pop(); return Q1.top(); }
}Q[M]; void mdf(int &x,int L,int R,int p,int u,int v){
if (!x) x=++tot;
if (L==R){
if (!pos[x]) pos[x]=++id;
H &q=Q[pos[x]];
if (~u) q.push(u);
if (~v) q.erase(v);
Mn[x]=q.size() ? q.top() : inf;
return;
}
int mid=(L+R)>>;
if (p<=mid) mdf(lson,p,u,v); else mdf(rson,p,u,v);
Mn[x]=min(Mn[ls[x]],Mn[rs[x]]);
} int que(int p){
int L=,R=inf,x=rt,ans=inf;
while (L!=R){
int mid=(L+R)>>,tmp=min(ans,Mn[rs[x]]);
if (p<=mid && tmp+mid>=*p) ans=tmp,R=mid,x=ls[x];
else L=mid+,x=rs[x];
}
return L-p;
} int main(){
freopen("apioa.in","r",stdin);
freopen("apioa.out","w",stdout);
scanf("%d%d%d",&n,&k,&q); Mn[]=inf;
rep(i,,k) S[i].insert(-inf),S[i].insert(inf),mdf(Root,inf,-inf,-);
rep(i,,n) scanf("%d%d%d%d",&x,&t,&a,&b),w[++m]=(P){,x,a,t},w[++m]=(P){-,x,b,t};
rep(i,,q) scanf("%d%d",&l,&y),w[++m]=(P){,l,y,i};
sort(w+,w+m+);
rep(i,,m){
P p=w[i];
if (p.op==){
multiset<int> &s=S[p.k];
multiset<int>::iterator q=s.upper_bound(p.x),r=q--;
mdf(Root,*r,p.x,*q); mdf(Root,p.x,*q,-);
if (s.size()==) cnt++; s.insert(p.x);
}
if (p.op==-){
multiset<int> &s=S[p.k];
s.erase(s.find(p.x));
if (s.size()==) cnt--;
multiset<int>::iterator q=s.upper_bound(p.x),r=q--;
mdf(Root,*r,*q,p.x); mdf(Root,p.x,-,*q);
}
if (p.op==) ans[p.k]=(cnt==k) ? que(p.x) : -;
}
rep(i,,q) printf("%d\n",ans[i]);
return ;
}
[BZOJ5462][APIO2018]新家(线段树+堆)的更多相关文章
- BZOJ5462 APIO2018新家(线段树+堆)
一个显然的做法是二分答案后转化为查询区间颜色数,可持久化线段树记录每个位置上一个同色位置,离线后set+树状数组套线段树维护.这样是三个log的. 注意到我们要知道的其实只是是否所有颜色都在该区间出现 ...
- LOJ 2585 「APIO2018」新家 ——线段树分治+二分答案
题目:https://loj.ac/problem/2585 算答案的时候要二分! 这样的话,就是对于询问位置 x ,二分出一个最小的 mid 使得 [ x-mid , x+mid ] 里包含所有种类 ...
- [APIO2018] New Home 新家 [线段树,multiset]
线段树的每个点表示当前点的前驱,即这个颜色上一次出现的位置,这个玩意multiset随便写写就完了. 重要的是怎么查询答案,无解显然先判掉. 线段树上二分就可以了 #include <bits/ ...
- luogu P4632 [APIO2018] New Home 新家 线段树 set 二分
写了一种比较容易理解 但是常数很大的sol. 容易发现可以扫描线. 维护好序列之后发现很难查距离 考虑二分. 这里二分可以在线段树上进行 当然可能存在一些问题 如果离散化的话需要处理一些比较麻烦的细节 ...
- [JLOI2014]松鼠的新家(线段树,树链剖分)
题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在”树“上. 松鼠想邀请小熊维尼前 ...
- 「APIO2018新家」
「APIO2018新家」 题目描述 五福街是一条笔直的道路,这条道路可以看成一个数轴,街上每个建筑物的坐标都可以用一个整数来表示.小明是一位时光旅行者,他知道在这条街上,在过去现在和未来共有 \(n\ ...
- LOJ.2585.[APIO2018]新家(二分 线段树 堆)
LOJ 洛谷 UOJ BZOJ 四OJ Rank1 hhhha 表示这个b我能装一年→_→ 首先考虑离线,将询问按时间排序.对于每个在\([l,r]\)出现的颜色,拆成在\(l\)加入和\(r+1\) ...
- 2015 UESTC 数据结构专题E题 秋实大哥与家 线段树扫描线求矩形面积交
E - 秋实大哥与家 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/contest/show/59 De ...
- 【BZOJ4504】K个串 可持久化线段树+堆
[BZOJ4504]K个串 Description 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计 ...
随机推荐
- vue的nextTick的实现
vue的nextTick是用浏览器支持的方法模拟nodejs的process.nextTick 老版本的vue用如下方法来模拟 Promise.thenMutationObserver(Mutatio ...
- JS Cookie相关操作
function setCookie(cookieName, cookieValue, expires) { // 设置Cookie function getCookieName(cookieName ...
- rsync 同步
1./usr/bin/rsync -vzrtopg --progress --include "weibo-service-server" --exclude "/*& ...
- npm获取配置值的两种方式
命令行标记 在命令行上放置--foo bar设置foo配置参数为bar. 一个 -- 参数(argument)告诉cli解析器停止读取flags.一个 在命令行结尾的--flag参数(paramete ...
- Nginx各项配置的含义
#user nobody; #配置用户或者组,默认为nobody nobody worker_processes 4; #允许生成的进程数,默认为1 worker_cpu_affinity 00000 ...
- 用户线程 (User Thread)、守护线程 (Daemon Thread)
在Java中有两类线程:用户线程 (User Thread).守护线程 (Daemon Thread). 所谓守护 线程,是指在程序运行的时候在后台提供一种通用服务的线程,比如垃圾回收线程就是一个很称 ...
- Idea IntelliJ远程调试教程
总结 第一步:修改startup.sh 在倒第二行加上export JPDA_ADDRESS=8787 最后一行在start前面加上" jpda " 第二步:配置Idea, ...
- bzoj3127/3697 [Usaco2013 Open]Yin and Yang
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3127 http://www.lydsy.com/JudgeOnline/problem.ph ...
- NOIP2005过河(青蛙过河)
题目传送门 这道题主要是因为L长度最大可以为1e9 而石子却最多只有100个 这样就浪费了很多时间空间 所以我们压缩一波路径就可以了 剩余的就是枚举每个点以及i-y到i-x的dp了 这里要说一句为什么 ...
- [BZOJ1031][JSOI2007]字符加密Cipher 解题报告
Description 喜欢钻研问题的JS 同学,最近又迷上了对加密方法的思考.一天,他突然想出了一种他认为是终极的加密办法:把需要加密的信息排成一圈,显然,它们有很多种不同的读法.例如下图,可以读作 ...