【题目链接】 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2266

【题目大意】

  有M个桶,N个球,球编号为1到N,每个球都有重量w_i。
  给出一个长K的数列,数列由球的编号构成。开始的时候,桶都是空的。
  接着我们从前往后从数列中取出一个数a_j,执行如下操作:
  如果球a_j已经存在于某一个桶中,那么什么也不干,花费为0,继续。
  如果任何桶中都没有a_j,那么找一个桶放a_j,
  如果该桶里还有球,那么取出原来的球,将a_j放进去。
  这种操作的花费是a_j的重量w_a_j,与桶以及原来的球没关系。
  求最小花费?

【题解】

  我们先假设我们只有一个桶,那么答案就是权值总和,
  然后我们考虑一下如何节省开支,多出来的m-1个桶可以让我们保留一些序号
  一直到下一个相同序号,就节省下了这个序号的费用,
  那这样,我们就得到了这个桶在这个时间区段,被这个序号所占用的信息
  我们将每个桶需要保留到下一个相同需要需要的时间区段整理成一个线段集合,
  那我们只要求出这些线段在最多相交m-1次的情况下能够得到的最大权值和,
  就是我们可以节省的最大开支了。

【代码】

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <utility>
using namespace std;
const int INF=0x3f3f3f3f;
typedef long long LL;
struct edge{
int to,cap,cost,rev;
edge(int to,int cap,int cost,int rev):to(to),cap(cap),cost(cost),rev(rev){}
};
const int MAX_V=10010;
int V,dist[MAX_V],prevv[MAX_V],preve[MAX_V];
vector<edge> G[MAX_V];
void add_edge(int from,int to,int cap,int cost){
G[from].push_back(edge(to,cap,cost,G[to].size()));
G[to].push_back(edge(from,0,-cost,G[from].size()-1));
}
int min_cost_flow(int s,int t,int f){
int res=0;
while(f>0){
fill(dist,dist+V,INF);
dist[s]=0;
bool update=1;
while(update){
update=0;
for(int v=0;v<V;v++){
if(dist[v]==INF)continue;
for(int i=0;i<G[v].size();i++){
edge &e=G[v][i];
if(e.cap>0&&dist[e.to]>dist[v]+e.cost){
dist[e.to]=dist[v]+e.cost;
prevv[e.to]=v;
preve[e.to]=i;
update=1;
}
}
}
}
if(dist[t]==INF)return -1;
int d=f;
for(int v=t;v!=s;v=prevv[v]){
d=min(d,G[prevv[v]][preve[v]].cap);
}f-=d;
res+=d*dist[t];
for(int v=t;v!=s;v=prevv[v]){
edge &e=G[prevv[v]][preve[v]];
e.cap-=d;
G[v][e.rev].cap+=d;
}
}return res;
}
void clear(){for(int i=0;i<=V;i++)G[i].clear();}
const int MAX_N=10010;
int M,N,K,w[MAX_N],lst[MAX_N],a[MAX_N];
int solve(){
for(int i=1;i<=N;i++)scanf("%d",&w[i]);
for(int i=1;i<=K;i++)scanf("%d",&a[i]);
int cnt=unique(a+1,a+K+1)-(a+1);
int res=0;
memset(lst,0,sizeof(lst));
V=cnt+1; clear();
for(int i=1;i<=cnt;i++){
res+=w[a[i]];
if(lst[a[i]])add_edge(lst[a[i]],i-1,1,-w[a[i]]);
lst[a[i]]=i;
}for(int i=1;i<cnt;i++)add_edge(i,i+1,INF,0);
printf("%d\n",res+min_cost_flow(1,cnt,M-1));
}
int main(){
while(~scanf("%d%d%d",&M,&N,&K))solve();
return 0;
}

AOJ 2266 Cache Strategy(费用流)的更多相关文章

  1. POJ 2677 旅行商问题 双调dp或者费用流

    Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3408   Accepted: 1513 Description ...

  2. hdu-5988 Coding Contest(费用流)

    题目链接: Coding Contest Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Ot ...

  3. POJ2195 Going Home[费用流|二分图最大权匹配]

    Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22088   Accepted: 11155 Desc ...

  4. BZOJ3130: [Sdoi2013]费用流[最大流 实数二分]

    3130: [Sdoi2013]费用流 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 960  Solved: 5 ...

  5. 洛谷 1004 dp或最大费用流

    思路: dp方法: 设dp[i][j][k][l]为两条没有交叉的路径分别走到(i,j)和(k,l)处最大价值. 则转移方程为 dp[i][j][k][l]=max(dp[i-1][j][k-1][l ...

  6. Codeforces 730I [费用流]

    /* 不要低头,不要放弃,不要气馁,不要慌张 题意: 给两行n个数,要求从第一行选取a个数,第二行选取b个数使得这些数加起来和最大. 限制条件是第一行选取了某个数的条件下,第二行不能选取对应位置的数. ...

  7. zkw费用流+当前弧优化

    zkw费用流+当前弧优化 var o,v:..] of boolean; f,s,d,dis:..] of longint; next,p,c,w:..] of longint; i,j,k,l,y, ...

  8. 【BZOJ-4213】贪吃蛇 有上下界的费用流

    4213: 贪吃蛇 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 58  Solved: 24[Submit][Status][Discuss] Desc ...

  9. 【BZOJ-3638&3272&3267&3502】k-Maximum Subsequence Sum 费用流构图 + 线段树手动增广

    3638: Cf172 k-Maximum Subsequence Sum Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 174  Solved: 9 ...

随机推荐

  1. ExtJS 4.1 TabPanel动态加载页面并执行脚本【转】

    ExtJS 4.1 TabPanel动态加载页面并执行脚本 按照官方示例,可以动态加载页面,可是脚本不执行,于是查SDK.google,发现scripts需要设置为true,于是设置该属性,整个代码如 ...

  2. HDU 2639 01背包求第k大

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. [ZJOI2007]棋盘制作 (单调栈)

    [ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间 ...

  4. 使用记事本创建Web服务(WebService)

    学习就要从最简单最直观的地方入手. 1)打开记事本,添加如下代码: <%@ WebService Language="C#" Class="myFirstWebSe ...

  5. Python-Jenkins API使用

    一.概述 最近在工作中需要用到在后台代码中触发Jenkins任务的构建,于是想到Jenkins是否有一些已经封装好的API类库提供,用于处理跟Jenkins相关的操作.下面就简单介绍下我的发现. 二. ...

  6. BAT定期删除N天前的文件

    1.直接看脚本在win2008测试可用 ::clean logs @echo off title clean up logs ::delete logs FORFILES /P /C "cm ...

  7. 使用jQuery发送POST,Ajax请求返回JSON格式数据

    问题: 使用jQuery POST提交数据到PHP文件, PHP返回的json_encode后的数组数据,但jQuery接收到的数据不能解析为JSON对象,而是字符串{"code" ...

  8. 调整文本输入框placeholder的颜色等样式

    input::-webkit-input-placeholder{     color: white !important;}input:-moz-placeholder{    color: whi ...

  9. Servlet的doGet与doPost方法的区别与使用

    Servlet的doGet与doPost方法的区别与使用 2016年07月07日 13:05:13 阅读数:10222 一,区别 在使用表单提交数据到服务器的时候有两张方式可共选择,一个是post一个 ...

  10. 【BZOJ4657】tower [网络流]

    炮塔 Time Limit: 10 Sec  Memory Limit: 256 MB Description Input Output 一行一个整数表示答案. Sample Input 4 5 0 ...