一、消息队列

消息即是信息的载体。为了让消息发送者和消息接收者都能够明白消息所承载的信息(消息发送者需要知道如何构造消息;消息接收者需要知道如何解析消息),它们就需要按照一种统一的格式描述消息,这种统一的格式称之为消息协议。所以,有效的消息一定具有某一种格式;而没有格式的消息是没有意义的。

而消息从发送者到接收者的方式也有两种。一种我们可以称为即时消息通讯,也就是说消息从一端发出后(消息发送者)立即就可以达到另一端(消息接收者),这种方式的具体实现就是我们已经介绍过的RPC(当然单纯的http通讯也满足这个定义);另一种方式称为延迟消息通讯,即消息从某一端发出后,首先进入一个容器进行临时存储,当达到某种条件后,再由这个容器发送给另一端。 这个容器的一种具体实现就是消息队列。

二、消息队列的应用场景

以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景。

2.1异步处理

场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种1.串行的方式;2.并行方式。

(1)串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端。

(2)并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间。

假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。

因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)。

小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?

引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:

按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍。

2.2应用解耦

场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图:

传统模式的缺点:

1)  假如库存系统无法访问,则订单减库存将失败,从而导致订单失败;

2)  订单系统与库存系统耦合;

如何解决以上问题呢?引入应用消息队列后的方案,如下图:

  • 订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功。
  • 库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作。
  • 假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦。

2.3流量削锋

流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。

应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。

  1. 可以控制活动的人数;
  2. 可以缓解短时间内高流量压垮应用;

  1. 用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面;
  2. 秒杀业务根据消息队列中的请求信息,再做后续处理。

2.4日志处理

日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下:

  • 日志采集客户端,负责日志数据采集,定时写受写入Kafka队列;
  • Kafka消息队列,负责日志数据的接收,存储和转发;
  • 日志处理应用:订阅并消费kafka队列中的日志数据;

以下是新浪kafka日志处理应用案例:转自(新浪技术分享:我们如何扛下32亿条实时日志的分析处理

(1)Kafka:接收用户日志的消息队列。

(2)Logstash:做日志解析,统一成JSON输出给Elasticsearch。

(3)Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能。

(4)Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因。

2.5消息通讯

消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。

点对点通讯:

客户端A和客户端B使用同一队列,进行消息通讯。

聊天室通讯:

客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。

以上实际是消息队列的两种消息模式,点对点或发布订阅模式。

三、消息模式

1. 点对点模式和发布订阅模式:是否可以重复消费

P2P模式:

P2P模式包含三个角色:消息队列(Queue),发送者(Sender),接收者(Receiver)。每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,直到他们被消费或超时。
P2P的特点

  1. 每个消息只有一个消费者(Consumer)(即一旦被消费,消息就不再在消息队列中)
  2. 发送者和接收者之间在时间上没有依赖性,也就是说当发送者发送了消息之后,不管接收者有没有正在运行,它不会影响到消息被发送到队列
  3. 接收者在成功接收消息之后需向队列应答成功

如果希望发送的每个消息都会被成功处理的话,那么需要P2P模式。、

Pub/sub模式:

包含三个角色:主题(Topic),发布者(Publisher),订阅者(Subscriber) 。多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。
Pub/Sub的特点

  1. 每个消息可以有多个消费者
  2. 发布者和订阅者之间有时间上的依赖性。针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息。
  3. 为了消费消息,订阅者必须保持运行的状态。

为了缓和这样严格的时间相关性,JMS允许订阅者创建一个可持久化的订阅。这样,即使订阅者没有被激活(运行),它也能接收到发布者的消息。
如果希望发送的消息可以不被做任何处理、或者只被一个消息者处理、或者可以被多个消费者处理的话,那么可以采用Pub/Sub模型。

2. 推模式和拉模式:消息的更新者

推(push)模式是一种基于C/S机制、由服务器主动将信息送到客户器的技术。

1. 在push模式应用中,服务器把信息送给客户器之前,并没有明显的客户请求。push事务由服务器发起。push模式可以让信息主动、快速地寻找用户/客户器,信息的主动性和实时性比较好。但精确性较差,可能推送的信息并不一定满足客户的需求。

2. 推送模式不能保证能把信息送到客户器,因为推模式采用了广播机制,如果客户器正好联网并且和服务器在同一个频道上,推送模式才是有效的。

3. push模式无法跟踪状态,采用了开环控制模式,没有用户反馈信息。在实际应用中,由客户器向服务器发送一个申请,并把自己的地址(如IP、port)告知服务器,然后服务器就源源不断地把信息推送到指定地址。在多媒体信息广播中也采用了推模式。

拉(pull)模式与推模式相反,是由客户器主动发起的事务。

服务器把自己所拥有的信息放在指定地址(如IP、port),客户器向指定地址发送请求,把自己需要的资源“拉”回来。不仅可以准确获取自己需要的资源,还可以及时把客户端的状态反馈给服务器。

本文并未引入新的内容,只是总结和归纳了前期学习中涉及到消息队列的内容,消息队列之前已经间歇、零散的学到了一些,借着MQ入门总结这一系列的文章重新系统学习一下,如是。

MQ入门总结(一)消息队列概念和使用场景的更多相关文章

  1. MQ(1)---消息队列概念和使用场景

    消息队列概念和使用场景 声明:本文转自:MQ入门总结(一)消息队列概念和使用场景 写的很好,都不用自己在整理了,非常感谢该作者的用心. 一.什么是消息队列 消息即是信息的载体.为了让消息发送者和消息接 ...

  2. MQ(消息队列)常见的应用场景解析

    前言 提高系统性能首先考虑的是数据库的优化,之前一篇文章<数据库的使用你可能忽略了这些>中有提到过开发中,针对数据库需要注意的事项.但是数据库因为历史原因,横向扩展是一件非常复杂的工程,所 ...

  3. 消息队列 概念 配合SpringBoot使用Demo

    转http://www.jianshu.com/p/048e954dab40 概念: 分布式消息队列 ‘分布式消息队列’包含两个概念 一是‘消息队列’,二是‘分布式’ 那么就先看下消息队列的概念,和为 ...

  4. 【mq读书笔记】消息队列负载与重新分配(分配 新队列pullRequest入队)

    回顾PullMessageService#run: 如果队列总没有PullRequest对象,线程将阻塞. 围绕PullRequest有2个问题: 1.PullRequest对象在什么时候创建并加入p ...

  5. 7月目标 socket , 一致性哈希算法 ; mongodb分片; 分布式消息队列; 中间件的使用场景

      分布式的基础:一致性哈希  路由算法的一致性hash http://www.jiacheo.org/blog/174 http://www.tuicool.com/articles/vQVbmai ...

  6. Kafka,Mq,Redis作为消息队列使用时的差异?

    redis 消息推送(基于分布式 pub/sub)多用于实时性较高的消息推送,并不保证可靠.其他的mq和kafka保证可靠但有一些延迟(非实时系统没有保证延迟).redis-pub/sub断电就清空, ...

  7. 消息队列 MQ 入门理解

    功能特性: 应用场景: 消息队列 MQ 可应用于如下几个场景: 分布式事务 在传统的事务处理中,多个系统之间的交互耦合到一个事务中,响应时间长,影响系统可用性.引入分布式事务消息,交易系统和消息队列之 ...

  8. MQ消息队列(1)—— 概念和使用场景

    一.什么是消息队列  消息即是信息的载体.为了让消息发送者和消息接收者都能够明白消息所承载的信息(消息发送者需要知道如何构造消息:消息接收者需要知道如何解析消息),它们就需要按照一种统一的格式描述消息 ...

  9. Spring Boot:使用Rabbit MQ消息队列

    综合概述 消息队列 消息队列就是一个消息的链表,可以把消息看作一个记录,具有特定的格式以及特定的优先级.对消息队列有写权限的进程可以向消息队列中按照一定的规则添加新消息,对消息队列有读权限的进程则可以 ...

随机推荐

  1. npm国内镜像介绍

    这个也是网上搜的,亲自试过,非常好用! 镜像使用方法(三种办法任意一种都能解决问题,建议使用第三种,将配置写死,下次用的时候配置还在): 1.通过config命令 npm config set reg ...

  2. Excel开发学习笔记:文件选择控件、查找匹配项、单元格格式及数据有效性

    一个自用的基于excel的小工具. , ), .Cells(, ))          sysKpiRow.Interior.ColorIndex =  ).value = , )           ...

  3. Windows Media Player 打不开怎么办

    1. 右键VS工具箱的空白处; 2. 打开工具箱, 选择com组件→找到windows media player 3. 如果这里没有发现 windows Media Player怎么办? , 以win ...

  4. Java学习之Dubbo+ZooKeeper分布式服务Demo

    背景:在之前的一个<Java学习之SpringBoot整合SSM Demo>分享中说到搭建ZooKeeper和Dubbo分布式框架中遇到了一些技术问题没能成功,只分享了其中的一个中间产物, ...

  5. java成神之——集合框架之Maps,Hashtable

    集合 Maps HashMap 创建和初始化map 遍历方式 LinkedHashMap WeakHashMap TreeMap 线程锁 Hashtable 结语 集合 Maps HashMap Ma ...

  6. 第九章 整合Mybatis(待续)

    ··········

  7. dubbo学习 二 dubbo源码大致查阅

    源码的解析在官网都已经写的非常详细,可以参考:http://dubbo.io/Developer+Guide-zh.htm   服务提供者暴露一个服务的详细过程 首先ServiceConfig类拿到对 ...

  8. 6410中的PWM&nbsp;定时器

    看了OK6410的手册,感觉晕晕的. 需要整理一下思路. 我觉得主要的知道下面这几个内容吧. 1. 定时器的电路结构. 2. 定时器的工作原理是什么.定时器如何来使用.{使用的时序是什么,在时间轴上各 ...

  9. JAVA环境安装配置

    dk1.6 64位是 Java 语言的软件开发工具包,主要用于移动设备.嵌入式设备上的java应用程序. jdk1.6 64位安装教程 jdk1.6 64位JDK的安装路径:D:\Program Fi ...

  10. linux下scsi共享磁盘的简单搭建

    linux下scsi共享磁盘的简单搭建 Scsi 共享磁盘需要我先有空余的分区,或者可以在虚拟机里面添加一块磁盘,安装所需的软件我在虚拟机里面添加了一块硬盘,分了一个主分区,sdb1 1G,将这个用s ...