# 洛谷题目链接:[[USACO07FEB]新牛棚Building A New Barn](https://www.luogu.org/problemnew/show/P2874)

题目描述

After scrimping and saving for years, Farmer John has decided to build a new barn. He wants the barn to be highly accessible, and he knows the coordinates of the grazing spots of all N (2 ≤ N ≤ 10,000 cows. Each grazing spot is at a point with integer coordinates (Xi, Yi) (-10,000 ≤ Xi ≤ 10,000; -10,000 ≤ Yi ≤ 10,000). The hungry cows never graze in spots that are horizontally or vertically adjacent.

The barn must be placed at integer coordinates and cannot be on any cow's grazing spot. The inconvenience of the barn for any cow is given the Manhattan distance formula | X - Xi | + | Y - Yi|, where (X, Y) and (Xi, Yi) are the coordinates of the barn and the cow's grazing spot, respectively. Where should the barn be constructed in order to minimize the sum of its inconvenience for all the cows?

给出平面上n个不相邻的点,要求到这n个点的曼哈顿距离之和最小的点的个数ans2,和这个最小距离ans1。

输入输出格式

输入格式:

Line 1: A single integer: N

Lines 2..N+1: Line i+1 contains two space-separated integers which are the grazing location (Xi, Yi) of cow i

输出格式:

Line 1: Two space-separated integers: the minimum inconvenience for the barn and the number of spots on which Farmer John can build the barn to achieve this minimum.

输入输出样例

输入样例#1:

4

1 -3

0 1

-2 1

1 -1

输出样例#1:

10 4

说明

The minimum inconvenience is 10, and there are 4 spots that Farmer John can build the farm to achieve this: (0, -1), (0, 0), (1, 0), and (1, 1).

简述一下题意:给出一个二维平面上\(n\)个点.要求出\(ans2\)个点使得这\(ans2\)个点到所有点的曼哈顿距离之和,这\(ans2\)个点不能是原平面直角坐标系中给出的点.两点间曼哈顿距离的公式为\(\left|x-x_i\right|+\left|y-y_i\right|\).

既然要到所有点的曼哈顿距离之和最小,那么可以先设答案点坐标为\((x,y)\).可以得到这样一个式子:

\[ans1=\sum{(\left|x-x_i\right|+\left|y-y_i\right|)}
\]

显然我们是要求出一个\((x,y)\)使得\(ans1\)最小,因为\(x\),\(y\)互不影响,所以可以分开处理,那么根据我们的数学知识,可以得知使\(ans1\)最小的值就是\(x\)序列的中位数,同理\(y\)也是序列中的中位数.

这样我们就求出了\(ans1\),但是因为题目的限制,如果\(n\)为奇数时,\(x\)和\(y\)直接求出的中位数有可能是原图中给出的点.所以这时我们要对这个点的上下左右进行判断,对上下左右求一遍最小值.

如果\(n\)为偶数时,那么在\(x[n/2],x[n/2+1],y[n/2],y[n/2+1]\)这四个点所围成的矩形中的所有点都是满足条件的. 先计算出这个矩形中包含的点的个数,然后再将原图中包含的点都一个个删掉.

#include<bits/stdc++.h>
using namespace std;
const int inf=2147483647;
const int N=10000+5; int n, x[N], y[N], ans1 = inf, ans2 = 0;
int dir[]={0,1,0,-1,0}; struct node{
int x, y;
}p[N]; int gi(){
int ans = 0 , f = 1; char i = getchar();
while(i<'0'||i>'9'){if(i=='-')f=-1;i=getchar();}
while(i>='0'&&i<='9'){ans=ans*10+i-'0';i=getchar();}
return ans * f;
} int main(){
cin >> n;
for(int i=1;i<=n;i++) x[i] = gi(), y[i] = gi();
for(int i=1;i<=n;i++) p[i].x = x[i], p[i].y = y[i];
sort(x+1 , x+n+1); sort(y+1 , y+n+1);
if(n & 1){
int a = x[n/2+1], b = y[n/2+1], sum = 0;
for(int i=1;i<=n;i++)
sum += abs(a-x[i])+abs(b-y[i]);
ans1 = sum; ans2 = 1;
for(int i=1;i<=n;i++)
if(p[i].x == a && p[i].y == b) ans1 = inf;
for(int i=0;i<4;i++){
int nx = a+dir[i], ny = b+dir[i+1], sum = 0;
for(int i=1;i<=n;i++)
sum += abs(nx-x[i])+abs(ny-y[i]);
if(sum < ans1) ans1 = sum, ans2 = 1;
else if(sum == ans1) ans2++;
}
}
else{
int x1 = x[n/2], x2 = x[n/2+1];
int y1 = y[n/2], y2 = y[n/2+1], sum = 0;
for(int i=1;i<=n;i++)
sum += abs(x1-x[i])+abs(y1-y[i]);
ans1 = min(ans1 , sum);
ans2 = (x2-x1+1)*(y2-y1+1);
for(int i=1;i<=n;i++)
if(x1<=p[i].x && p[i].x<=x2 && y1<=p[i].y && p[i].y<=y2) ans2--;
}
printf("%d %d\n",ans1,ans2);
return 0;
}

[USACO07FEB]新牛棚Building A New Barn的更多相关文章

  1. 洛谷P2874 [USACO07FEB]新牛棚Building A New Barn [贪心]

    题目传送门 题目描述 After scrimping and saving for years, Farmer John has decided to build a new barn. He wan ...

  2. P2874 [USACO07FEB]新牛棚Building A New Barn

    题目描述 After scrimping and saving for years, Farmer John has decided to build a new barn. He wants the ...

  3. Bzoj 1696: [Usaco2007 Feb]Building A New Barn新牛舍 中位数,数学

    1696: [Usaco2007 Feb]Building A New Barn新牛舍 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 394  Solve ...

  4. 【BZOJ】1696: [Usaco2007 Feb]Building A New Barn新牛舍(贪心)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1696 原题要求min(sum{|x-xi|+|y-yi|}),且一定要看题:“没有两头牛的吃草位置是 ...

  5. bzoj 1696: [Usaco2007 Feb]Building A New Barn新牛舍 ——中位数排序

    Description 经过多年的积蓄,农夫JOHN决定造一个新的牛舍.他知道所有N(2 <= N <= 10,000)头牛的吃草位置,所以他想把牛舍造在最方便的地方. 每一头牛吃草的位置 ...

  6. BZOJ1696: [Usaco2007 Feb]Building A New Barn新牛舍

    n<=10000个点(xi,yi),找到一个不同于给出的所有点的点,使得该点到所有点的曼哈顿距离最小并找出这样的点的个数. 第一眼看上去这不是中位数嘛,奇数一个点偶数一片,然后找一下这篇区域有几 ...

  7. BZOJ 1696 [Usaco2007 Feb]Building A New Barn新牛舍 数学

    题意:链接 方法:数学+模拟 解析: 首先这类问题不是第一次见了,所以直接知道拿x的中位数.y的中位数. 这题就是讨论情况很的烦. 题中有个限制,给出待求和的点不能选取. 所以假设奇数个点,求出x中位 ...

  8. [USACO17JAN]Building a Tall Barn建谷仓

    题目描述 Farmer John is building a brand new, NNN -story barn, with the help of his KKK cows ( 1≤N≤K≤101 ...

  9. TZOJ 1689 Building A New Barn(求平面上有几个其它点求到n个点的曼哈顿距离最小)

    描述 After scrimping and saving for years, Farmer John has decided to build a new barn. He wants the b ...

随机推荐

  1. 58HouseSearch项目迁移到asp.net core

    前言 58HouseSearch这个项目原本是基于ASP.NET MVC 4写的,开发环境是Windows+VS2015,发布平台是linux+mono+jexus,这样看来整个项目基本已经满足跨平台 ...

  2. 三张照片解决--win10系统的edge浏览器设置为浏览器IE8,IE7,IE9---完美解决 费元星

      主要思想:         第二种方法:     参考文档: 1.可以在系统盘的C:\Program Files\Internet Explorer中找到iexplore.exe,然后将其发送到桌 ...

  3. Vue一些重要的知识点

    vue sync修饰(1)双向数据绑定,父子组件之间信息的交互 1⃣️在自组件中使用this.emmit('toFather'),子组件产生一个tofather事件,然后在父组件中通过@进行监听,那么 ...

  4. 【性能调优】一次关于慢查询及FGC频繁的调优经历

    以下来分享一个关于MySQL数据库慢查询和FGC频繁的性能案例. 一.系统架构 一个简单的dubbo服务,服务提供者提供接口,并且提供接口的实现,提供方注册服务到Zookeeper注册中心,然后消费者 ...

  5. spring boot 线程池配置

    1.配置类 package cn.com.bonc.util; import java.util.concurrent.Executor; import java.util.concurrent.Th ...

  6. windows下git hub的GUI软件配置与使用

    转载自:http://www.cnblogs.com/haore147/p/3618930.html   1. 安装两个软件 1 2 1. git的命令行程序--git for windows:htt ...

  7. BZOJ 2669 CQOI2012 局部极小值 状压dp+容斥原理

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题意概述:实际上原题意很简洁了我就不写了吧.... 二话不说先观察一下性质,首先棋盘 ...

  8. HDU 4436 str2int(后缀自动机)(2012 Asia Tianjin Regional Contest)

    Problem Description In this problem, you are given several strings that contain only digits from '0' ...

  9. POJ 2516 Minimum Cost(最小费用流)

    Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...

  10. gdb调试命令的使用及总结

    gdb调试命令的使用及总结 gdb是一个在UNIX环境下的命令行调试工具.如果需要使用gdb调试程序,请在gcc时加上-g选项.下面的命令部分是简化版,比如使用l代替list等等. 1.基本命令 命令 ...