洛谷1984 [SDOI2008]烧水问题
一道找规律
原题链接
显然要将烧得的温度最大化利用,即每次都去热传递。
设水沸腾为\(x\)。
第一杯直接烧水,需提高\(x\)。
第二杯先与第一杯进行热传递,这样只需提高\(\dfrac{x}{2}\),是上一杯的\(\dfrac{1}{2}\)倍。此时两杯温度为\(\dfrac{x}{2},x\)。
第三杯先与第一杯进行热传递,再与第二杯进行热传递,需提高\(x-\dfrac{\dfrac{\frac{x}{2}}{2}+x}{2}=\dfrac{3x}{8}\),是上一杯的\(\dfrac{3}{4}\)倍。此时三杯温度为\(\dfrac{x}{4},\dfrac{5x}{8},x\)。
第四杯同理,需提高\(x-\dfrac{\dfrac{\dfrac{\frac{x}{4}}{2}+\dfrac{5x}{8}}{2}+x}{2}=\dfrac{5x}{16}\),是上一杯的\(\dfrac{5}{6}\)倍。
\(\cdots\)
即第\(n\)杯是第\(n-1\)杯的\(\dfrac{2\times(n-1)-1}{2\times(n-1)}\)倍。
其实手算几杯找到规律就好
#include<cstdio>
using namespace std;
int main()
{
int n, i;
double s = 100, la = 100;
scanf("%d", &n);
for (i = 1; i < n; i++)
{
la *= 1.0*((i << 1) - 1) / (i << 1);
s += la;
}
printf("%.2f", 4200 * s / n);
return 0;
}
洛谷1984 [SDOI2008]烧水问题的更多相关文章
- 洛谷 1984 [SDOI2008]烧水问题
[题解] 烧开每一杯水之后都用它去把其他没烧开的水焐热,这样显然是最优的.然后推推式子或者列表找规律就好了. #include<cstdio> #include<algorithm& ...
- 洛谷 P1984 [SDOI2008]烧水问题
洛谷 P1984 [SDOI2008]烧水问题 题目描述 把总质量为1kg的水分装在n个杯子里,每杯水的质量均为(1/n)kg,初始温度均为0℃.现需要把每一杯水都烧开.我们可以对任意一杯水进行加热. ...
- 洛谷P1984 SDOI2008烧水问题
P1984 [SDOI2008]烧水问题 186通过 438提交 题目提供者lych 标签数论(数学相关)模拟各省省选 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 求助! 也是醉了... ...
- 洛谷 P1984 [SDOI2008]烧水问题 解题报告
P1984 [SDOI2008]烧水问题 题目描述 把总质量为1kg的水分装在n个杯子里,每杯水的质量均为(1/n)kg,初始温度均为0℃.现需要把每一杯水都烧开.我们可以对任意一杯水进行加热.把一杯 ...
- 洛谷 P2463 [SDOI2008]Sandy的卡片 解题报告
P2463 [SDOI2008]Sandy的卡片 题意 给\(n(\le 1000)\)串,定义两个串相等为"长度相同,且一个串每个数加某个数与另一个串完全相同",求所有串的最长公 ...
- 洛谷 P2158 [SDOI2008]仪仗队 解题报告
P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...
- 洛谷 P2155 [SDOI2008]沙拉公主的困惑 解题报告
P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\ ...
- 洛谷——P2158 [SDOI2008]仪仗队
P2158 [SDOI2008]仪仗队 找规律大水题嘛,如果你做过P1170 兔八哥与猎人 这题得到的规律是$a,b,c,d$,若$gcd(a-b,c-d)==1$ 那么$a,b$就能看到$c,d$ ...
- 洛谷P2158 [SDOI2008]仪仗队
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...
随机推荐
- lcd 显示屏
1.lcd 接口信号: VSYNC : 一帧新数据的开始信号 HSYNC :一行新数据的开始信号 VCLK :像素的同步信号 VD[0:23] :传递数据的信号线 2. LCD 的显示原理 ( ...
- package.json bin
[package.json bin] 1.bin field in your package.json which is a map of command name to local file nam ...
- Oracle 存储过程例子返回记录集
转载:https://www.cnblogs.com/mikalshao/articles/1454134.html Oracle 不支持批量查询,因此无法从一个命令返回多个结果集.使用存储过程时,返 ...
- maven命令的简单理解
mvn clean //在target文件夹中的一切都将被删除 mvn compile //编译源代码 mvn test //运行应用程序中的单元测试 mvn package //把jar打到本项 ...
- 2019年华南理工大学程序设计竞赛(春季赛)-H-Parco_Love_GCD
题目链接:https://ac.nowcoder.com/acm/contest/625/H 题意:给定n个数(<=1e9)的序列,其中n<=5e5,求该序列所有子序列的对应的gcd对1e ...
- 数论----gcd和lcm
gcd即最大公约数,lcm即最小公倍数. 首先给出a×b=gcd×lcm 证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=x*y*k*k,而lcm=x*y*k,所以a*b=gcd*lcm. ...
- HDU-1069.MonkeyandBanana(LIS)
本题大意:给出n个长方体,每种长方体不限量,让你求出如何摆放长方体使得最后得到的总高最大,摆设要求为,底层的长严格大于下层的长,底层的宽严格大于下层的宽. 本题思路:一开始没有啥思路...首先应该想到 ...
- 项目总结14:Windows远程连接redis(cmd指令或PowerShell指令)
1-确认远程的redis服务器是否允许被远程连接,已redis server安装在阿里云ECS上为例 1-1-确认在阿里云控制台,开放了端口6379和允许访问的IP 1-2-确认在服务器上安装redi ...
- 有关html5的history api
从Ajax翻页的问题说起 请想象你正在看一个视频下面的评论,在翻到十几页的时候,你发现一个写得稍长,但非常有趣的评论.正当你想要停下滚轮细看的时候,手残按到了F5.然后,页面刷新了,评论又回到了第一页 ...
- Efficiency optimizing
*low efficiency l_it_alv_stpox[] = g_it_alv_stpox[]. SORT l_it_alv_stpox BY zz_matnr idnrk. LOOP AT ...