【BZOJ1487】[HNOI2009]无归岛(动态规划)
【BZOJ1487】[HNOI2009]无归岛(动态规划)
题面
题解
哪来的这么多废话啊,直接说一个仙人掌得了。
然后就是要你求仙人掌最大独立集了。(随便蒯份原来的代码就过了)
不过我还是重新整理一遍思路吧。
一种是裸的\(dp\),只需要额外考虑上环的影响就好了。
这种方法我们从树上的做法推广过来。
先考虑树的最大独立集,设\(f[i][0/1]\)表示当前考虑\(i\)及其子树,这个点一定不选,以及随意的最大独立集。转移的时候枚举这个点选还是不选即可。
推广到仙人掌上,相比于树,还多出来一条返祖边。所以额外维护一维\(0/1\),表示这条边所在的环的最底下的那个端点是否被选。分情况讨论转移即可,详细的解法戳这里。
另外一种方法基于圆方树的思想。我们假装构建出来了圆方树(事实上不会构建出来的,只是利用了这个形式)。对于环而言,我们可以单独把环扣下来,显然除了环之外挂的子树对于这个环上的点是否选择是无关的。状态和树上的\(dp\)一样的设计。转移的时候这样子:如果这条边是一条树边,那么我们直接转移就好了,就把他当成一棵树来做。否则是一条返祖边,那么我们单独考虑这个环的贡献。现在的形式就是环上挂着一串的子树,子树内的答案我们已知,那么从一个方向开始遍历整个环,记录一下这个点选还是没有选的最大贡献,显然最终这个环的贡献只需要合并到深度最浅的那个点上面就可以了。那么枚举这个深度最浅的点是选还是不选,直接贪心抉择一下即可。更加具体的戳这里
代码一:直接\(dp\)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 100100
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX*3];
int h[MAX],cnt=1,n,m;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int dep[MAX],fa[MAX],a[MAX];
int tp[MAX],un[MAX];
void dfs(int u,int ff)
{
fa[u]=ff;dep[u]=dep[ff]+1;
for(int i=h[u];i;i=e[i].next)
if(!dep[e[i].v])dfs(e[i].v,u);
}
void jump(int u,int v){int x=v;while(x!=u)tp[x]=u,un[x]=v,x=fa[x];}
int f0[MAX],f1[MAX],g0[MAX],g1[MAX];
void dp(int u)
{
f1[u]=a[u];
if(u!=un[u])g1[u]=a[u];
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(dep[u]+1!=dep[v])continue;
dp(v);
if(un[u]!=un[v])g0[u]+=f1[v],g1[u]+=g0[v];
else g0[u]+=g1[v],g1[u]+=g0[v];
if(tp[v]!=u)f0[u]+=f1[v],f1[u]+=f0[v];
else f0[u]+=f1[v],f1[u]+=g0[v];
}
f1[u]=max(f1[u],f0[u]);
g1[u]=max(g1[u],g0[u]);
}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
for(int i=1;i<=n;++i)a[i]=read();
dfs(1,0);
for(int u=1;u<=n;++u)
for(int i=h[u];i;i=e[i].next)
if(dep[u]<dep[e[i].v]&&fa[e[i].v]!=u)
jump(u,e[i].v);
dp(1);
printf("%d\n",f1[1]);
return 0;
}
类似圆方树的思想的做法:
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 100100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<2];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,m,a[MAX];
int dfn[MAX],low[MAX],tim,f[MAX][2],fa[MAX];
void dp(int u,int y)
{
int f0=0,f1=0,t0,t1;
for(int i=y;i!=u;i=fa[i])
{
t0=f0+f[i][0];t1=f1+f[i][1];
f0=max(t0,t1);f1=t0;
}
f[u][0]+=f0;
f0=0;f1=-1e9;
for(int i=y;i!=u;i=fa[i])
{
t0=f0+f[i][0];t1=f1+f[i][1];
f0=max(t0,t1);f1=t0;
}
f[u][1]+=f1;
}
void Tarjan(int u,int ff)
{
dfn[u]=low[u]=++tim;fa[u]=ff;f[u][1]=a[u];
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(!dfn[v])Tarjan(v,u),low[u]=min(low[u],low[v]);
else if(v!=ff)low[u]=min(low[u],dfn[v]);
if(low[v]>dfn[u])
f[u][0]+=max(f[v][0],f[v][1]),f[u][1]+=f[v][0];
}
for(int i=h[u];i;i=e[i].next)
if(fa[e[i].v]!=u&&dfn[u]<dfn[e[i].v])
dp(u,e[i].v);
}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
for(int i=1;i<=n;++i)a[i]=read();
Tarjan(1,0);
printf("%d\n",max(f[1][0],f[1][1]));
return 0;
}
【BZOJ1487】[HNOI2009]无归岛(动态规划)的更多相关文章
- bzoj1487 [HNOI2009]无归岛
Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛 上的任意两个生物,他们有且仅有 ...
- BZOJ1487 [HNOI2009]无归岛 【仙人掌dp】
题目链接 BZOJ1487 题解 就是一个简单的仙人掌最大权独立集 还是不会圆方树 老老实实地树形Dp + 环处理 #include<iostream> #include<cstdi ...
- 2019.02.07 bzoj1487: [HNOI2009]无归岛(仙人掌+树形dp)
传送门 人脑转化条件过后的题意简述:给你一个仙人掌求最大带权独立集. 思路:跟这题没啥变化好吗?再写一遍加深记忆吧. 就是把每个环提出来分别枚举环在图中的最高点选还是不选分别dpdpdp一下即可,时间 ...
- P4410 [HNOI2009]无归岛
P4410 [HNOI2009]无归岛 显然这还是一个仙人掌图 对于同一个岛上的任意两个生物,他们有且仅有一个公共朋友 要求求最大独立集,和树形dp一样,遇到环时单独提出来处理一下就好了 #inclu ...
- 【刷题】BZOJ 1487 [HNOI2009]无归岛
Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛上的任意两个生物,他们有且仅有一 ...
- 【BZOJ1487】[HNOI2009]无归岛(仙人掌 DP)
题目: BZOJ1487 分析: 题目中给定的图一定是一棵仙人掌(每条边最多属于一个环),证明如下: 先考虑单独一个岛的情况.第一,一个岛一定是一张「弦图」,即任意一个大小超过 3 的环都至少有 1 ...
- [HNOI2009]无归岛
Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛上的任意两个生物,他们有且仅有一 ...
- 【题解】HNOI2009无归岛
这题真的是无语了,在哪个岛上根本就没有任何的用处……不过我是画了下图,感受到一定是仙人掌,并不会证.有谁会证的求解…… 如果当做仙人掌来做确实十分的简单.只要像没有上司的舞会一样树形dp就好了,遇到环 ...
- Luogu-4410 [HNOI2009]无归岛
裸的仙人掌最大独立子集,结果一个zz的错误让我调了好久... \(-inf\)开始设为\(0x7fffffff\)结果\(A_i\)有负数一加就炸了 #include<cstdio> #i ...
随机推荐
- 论FPGA建模,与面向对象编程的相似性
很久没有写FPGA方面的博客了,因为最近一直在弄一个绘图的上位机. 我觉得自己建模思想还不错,但是面向对象思维总是晕的.突然有一天发现,两者居然有这么对共同之处,完全可以相互启发啊.就简单聊下. 1. ...
- python 字符串的split()函数详解
split翻译为分裂. split()就是将一个字符串分裂成多个字符串组成的列表. split()当不带参数时以空格进行分割,当代参数时,以该参数进行分割. //---当不带参数时 example: ...
- 【php增删改查实例】 第三节 - mysql 建表
这一节,来给数据库中添加一些测试数据. 登陆mysql: 找到%xampp%\mysql\bin 目录, 在此处打开命令窗口,用root用户登陆mysql 用户表建表sql: CREATE TABLE ...
- python中eval函数作用
eval函数就是实现list.dict.tuple与str之间的转化str函数把list,dict,tuple转为为字符串 一.字符串转换成列表 a = "[[1,2], [3,4], [5 ...
- ECC检验与纠错
引入ECC ECC:Error Checking and Correction,是一种差错检测和修正的算法. NAND闪存在生产和使用中都会有坏块产生,BBM就是坏块的管理机制.而生产坏块已经无法避免 ...
- docker之故障问题解决方案
1.报错如下一 Error response from daemon: driver failed programming external connectivity on endpoint lnmp ...
- NX 栈不可执行的绕过方式--ROP链
目标程序下载 提取码:5o0a 环境:Ubuntu linux 工具 pwn-gdb pwntools python库 ROPgadget ( 这些工具可以到github官网找) 1.检查程序开了哪些 ...
- (转)Unity内建图标列表
用法 Gizmos.DrawIcon(transform.position, "PointLight Gizmo"); UnityEditor.EditorGUIUtility.F ...
- JWT总结
Json web token (JWT) 什么是JWT? Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准((RFC 7519).该toke ...
- Vue.js 相关知识(路由)
1. 简介 路由,工作原理与路由器相似(路由器将网线总线的IP分发到每一台设备上),Vue中的路由根据用户在网页中的点击,将其引导到对应的页面. 2. 使用步骤 安装vue-router或者直接引入v ...