样例输入复制

2
3 3 0
3 3 1
2 2

样例输出复制

Case #1: 36
Case #2: 20

题目来源

ACM-ICPC 2018 南京赛区网络预赛

题意:

  就是求图中去掉涂黑的方格后还剩多少长方形

解析:

这个讲的非常好了

https://blog.csdn.net/Sirius_han/article/details/82313029
  对于一个长为L, 高为H的无黑点矩阵中包含的高为H的子矩阵个数为L+(L-1)+(L-2)+...+1个;这是直接算的一种方法;如何程序表示该计算呢?

for(int i=; i<=L; i++){
for(int j=i; j>; j--){
count+=;
}
}

这样的一个双层循环就表示了上式;那么所有子矩阵个数就是三层循环,高由1->H:

for(int h=; h<=H; h++){
for(int i=; i<=L; i++){
for(int j=i; j>; j--){
count+=h;
}
}
} ​

这是其中没有黑点的;如果在某处加了个黑点又如何计算呢?如下图:

先看高为H(4)的子矩阵个数:以(4, 7)为右下角的高为H的子矩阵个数为3个,由L=4处在向左,就只能构成高为2的子矩阵了;

那么怎么该上边的代码才能得出答案呢?如下:

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
int w[maxn][], bz[];
int n, m, k; int main()
{
int T, kase = ;
rd(T);
while(T--)
{
mem(bz, );
mem(w, );
rd(n), rd(m), rd(k);
int x, y;
rep(i, , k)
{
rd(x), rd(y);
w[x][y] = ;
}
LL res = ;
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
if(w[i][j])
bz[j] = i;
for(int j=; j<=m; j++)
{
LL mind = INF;
for(int p=j; p>; p--)
{
mind = min(mind, (LL)(i - bz[p]));
res += mind;
}
}
}
printf("Case #%d: %lld\n", ++kase, res); } return ;
}

The writing on the wall 南京网络赛2018B题的更多相关文章

  1. 2019ICPC南京网络赛A题 The beautiful values of the palace(三维偏序)

    2019ICPC南京网络赛A题 The beautiful values of the palace https://nanti.jisuanke.com/t/41298 Here is a squa ...

  2. HDU 4751 Divide Groups (2013南京网络赛1004题,判断二分图)

    Divide Groups Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  3. HDU 4750 Count The Pairs (2013南京网络赛1003题,并查集)

    Count The Pairs Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others ...

  4. HDU 4758 Walk Through Squares (2013南京网络赛1011题,AC自动机+DP)

    Walk Through Squares Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Oth ...

  5. 2013 ACM/ICPC 南京网络赛F题

    题意:给出一个4×4的点阵,连接相邻点可以构成一个九宫格,每个小格边长为1.从没有边的点阵开始,两人轮流向点阵中加边,如果加入的边构成了新的边长为1的小正方形,则加边的人得分.构成几个得几分,最终完成 ...

  6. Sum 南京网络赛J题

    题意: 统计每个数的因子的对数,如果因子能被某个平方数整除,则不统计在内,每对因子有序 解析: 我们对某个数n进行质因子分解,如果某个质因子的指数大于2则 f(n) = 0, 例 N = X3 * M ...

  7. 2018南京网络赛L题:Magical Girl Haze(最短路分层图)

    题目链接:https://nanti.jisuanke.com/t/31001 解题心得: 一个BZOJ的原题,之前就写过博客了. 原题地址:https://www.lydsy.com/JudgeOn ...

  8. 2018 ACM南京网络赛H题Set解题报告

    题目描述 给定\(n\)个数$a_i$,起初第\(i\)个数在第\(i\)个集合.有三种操作(共\(m\)次): 1 $u$ $v$ 将第$u$个数和第$v$个数所在集合合并 2 $u$ 将第$u$个 ...

  9. 2019年南京网络赛E题K Sum(莫比乌斯反演+杜教筛+欧拉降幂)

    目录 题目链接 思路 代码 题目链接 传送门 思路 首先我们将原式化简: \[ \begin{aligned} &\sum\limits_{l_1=1}^{n}\sum\limits_{l_2 ...

随机推荐

  1. CAN设计与应用指南

    CAN设计与应用指南 0.前言 这是我为公司写的一个关于CAN总线的入门文章,对全面理解CAN总线特性很有帮助,拿出来分享给大家. 1. 简介 CAN总线由德国BOSCH公司开发,最高速率可达到1Mb ...

  2. android学习---Gallery画廊视图

    Gallery与Spinner有共同父类:AbsPinner.说明Gallery与Spinner都是一个列表框. 它们之间的差别在于Spinner显示的是一个垂直的列表选择框,而Gallery显示的是 ...

  3. WPF编程,指定窗口图标、窗口标题,使得在运行状态下任务栏显示窗口图标的一种方法。

    原文:WPF编程,指定窗口图标.窗口标题,使得在运行状态下任务栏显示窗口图标的一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_4330793 ...

  4. Nuget包CommonServiceLocator从1.0.3升级到2.0.4时MvvmLight的ViewModelLocator初始化SimpleIoc.Default格式不匹配问题

    原文:Nuget包CommonServiceLocator从1.0.3升级到2.0.4时MvvmLight的ViewModelLocator初始化SimpleIoc.Default格式不匹配问题 把旧 ...

  5. Java技术——String类为什么是不可变的

    0. 前言   如果一个对象,在它创建完成之后不能再改变它的状态,包括对象内的成员变量.基本数据类型的值等等.那么这个对象就是不可变的.众所周知String类就是不可变的.转载请注明出处为SEU_Ca ...

  6. android全屏

    this.requestWindowFeature( Window.FEATURE_NO_TITLE ); this.getWindow().setFlags(WindowManager.Layout ...

  7. JS基础内容小结(基础)(一)

    字符串的各类方法 str.charAt(1); 从第0个开始计算获取第一个子符串,如str=‘你好吗’获取到‘好’ str.charCodeAt(1); 获取对应字符串的编码数字:从第0个开始计算 S ...

  8. 从头到尾谈一下HTTPS

    引言 “你能谈一下HTTPS吗?” “一种比HTTP安全的协议.” “...” 如果面试这样说的话那差不多就gg了,其实HTTPS要展开回答的话内容还挺丰富的.本篇文章详细介绍了HTTPS是什么.为什 ...

  9. Network Mapper 嗅探工具

    1. nmap (目标ip地址 xxx.xxx.xxx.xxx) - 例子:nmap xxx.xxx.xxx.xxx2. nmap自定义扫描 - 例子:nmap -p(端口号) xxx.xxx.xxx ...

  10. Linux shell(1)

    Linux的Shell种类众多,常见的有:Bourne Shell(/usr/bin/sh或/bin/sh).Bourne Again Shell(/bin/bash).C Shell(/usr/bi ...