A/B

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 10383    Accepted Submission(s):
8302

Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973)
= 1)。
 
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n <
9973)和B(1 <= B <= 10^9)。
 
Output
对应每组数据输出(A/B)%9973。
 
Sample Input
2
1000 53
87 123456789
 
Sample Output
7922
6060
 
逆元概念:p是素数,在%p的情况下,如果 ( a*inv(a) ) ≡ 1 (%p),则inv(a)是a的乘法逆元
解题过程:
(A/B)%P
= (A%P) * (1/B)%P 同余定理,并且(A%P)=n,已知
= n * (1/B)%P
先不管n,
 
只看(1/B)%P
找B的逆元,按概念就是  (  B*inv(B) ) % P = 1%P = 1;
代入( /B )%P
=( B*inv(B)/B )%P
=inv(B) %P
 
费马小定理概念:如果p是素数,a和p互质,即gcd(a,p)=1,则 a^(p-1)≡1( %p )
逆元和费马小定理联立可得 a * a^(p-2) ≡ 1( %p ), inv(a) = a^(p-2)
代入inv(B) %P
=B^(P-2) %P
 
则原式 = n * B^(P-2) % P
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<math.h>
#include<string>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
const ll p=; ll power(ll a,ll b)//快速幂
{
ll res=;
while(b)
{
if(b%==)
res=res*a%p;
b=b/;
a=a*a%p;
}
return res%p;
} int main()
{
ll t,n,b;
scanf("%lld",&t);
while(t--)
{
scanf("%lld%lld",&n,&b);
ll ans;
ans=n*power(b,p-)%p;
printf("%lld\n",ans);
}
return ;
}
 
 
 

hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)的更多相关文章

  1. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  2. CodeForces 300C Beautiful Numbers(乘法逆元/费马小定理+组合数公式+高速幂)

    C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  3. 51nod A 魔法部落(逆元费马小定理)

    A 魔法部落 小Biu所在的部落是一个魔法部落,部落中一共有n+1个人,小Biu是魔法部落中最菜的,所以他的魔力值为1,魔法部落中n个人的魔法值都不相同,第一个人的魔法值是小Biu的3倍,第二个人的魔 ...

  4. 费马小定理&欧拉定理

    在p是素数的情况下,对任意整数x都有xp≡x(mod p).这个定理被称作费马小定理其中如果x无法被p整除,我们有xp-1≡1(mod p).利用这条性质,在p是素数的情况下,就很容易求出一个数的逆元 ...

  5. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  6. 【BZOJ】3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(排列组合+乘法逆元+欧拉定理/费马小定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3398 以下牡牛为a,牝牛为b. 学完排列计数后试着来写这题,“至少”一词可以给我们提示,我们可以枚举 ...

  7. HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))

    Invoker Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 122768/62768K (Java/Other) Total Subm ...

  8. hihocoder #1698 假期计划 (排列组合+费马小定理+乘法逆元)

    Description 小Ho未来有一个为期N天的假期,他计划在假期中看A部电影,刷B道编程题.为了劳逸结合,他决定先拿出若干天看电影,再拿出若干天刷题,最后再留若干天看电影.(若干代指大于0)  每 ...

  9. 简记乘法逆元(费马小定理+扩展Euclid)

    乘法逆元 什么是乘法逆元? 若整数 \(b,m\) 互质,并且\(b|a\) ,则存在一个整数\(x\) ,使得 \(\frac{a}{b}\equiv ax\mod m\) . 称\(x\) 是\( ...

随机推荐

  1. virt-install详解

    man virt-install VIRT-INSTALL() Virtual Machine Manager VIRT-INSTALL() NAME virt-install - provision ...

  2. shell脚本遍历子目录

    #!/bin/bashsource /etc/profile tool_path=/data/rsync_clientroot_path=/data/log ####yyyy-mm-dd¸ñʽdat ...

  3. mongodb $用法,等

    1.$修改器 : $set 简单粗暴 {name:value} dict["name"]=value   $unset 简单粗暴的删除字段 {$unset:{name:1}} de ...

  4. int 操作

    int类型只能进行 +  -  *   /   %    //   ** # bit_length() 二进制长度

  5. springboot中JPA的应用

    1.JPA JPA(Java Persistence API)是Sun官方提出的Java持久化规范.它为Java开发人员提供了一种对象/关联映射工具来管理Java应用中的关系数据.他的出现主要是为了简 ...

  6. Vue项目,运行出现warning(Emitted value instead of an instance of Error)

    组件:<XXXX v-for="item in items" /> warning:(Emitted value instead of an instance of E ...

  7. hello-R

    #print start { #: is array :) { print(:i) } } #print end #if start { x<- ) print(x) else print(&q ...

  8. 一个不错的PHP二维数组排序函数简单易用存用

    一个不错的PHP二维数组排序函数简单易用存用 传入数组,传入排序的键,传入排序顺序 public function array_sort($arr,$keys,$type='asc') { $keys ...

  9. 重识linux-关于selinux

    重识linux-关于selinux 1 selinux是一个内核模块,有美国国家安全局研发,主要在基因redhat分支的系统上实现,当初的设计是未了避免用户资源的误用, 而SELINUX使用的是MAC ...

  10. [转] 常用的CSS命名规则

    (一)常用的CSS命名规则  头:header  内容:content/container  尾:footer  导航:nav  侧栏:sidebar  栏目:column  页面外围控制整体布局宽度 ...