http://codeforces.com/contest/662/problem/C

题意:
n行m列01矩阵,每次可以反转一行或一列,问最后最少可以剩下多少个1

n只有20,把行状态压缩

操作奇数次相当于1次,操作偶数次相当于不操作

所以可以枚举对行的操作,将操作也状态压缩

A[i] 表示有多少列的状态为i

B[i] 表示 状态为i时的最优解,即fanzh

C[i] 表示 操作i的最优解

执行一次行操作相当于给某一列的状态异或上操作的状态

C[opt] = Σ A[state]*B[opt xor state]

(先执行这种行操作,如果某一列发现再执行一次列操作更优,那这一列再执行列操作,这通通包含在B数组里)

目前求C的复杂度为 2^2n

令 res = opt xor state

C[opt] = Σ(state) Σ(res)   [state xor res == opt] A[state]*B[res]

C[opt] = Σ(state) Σ(res)   [state xor opt == res] A[state]*B[res]

然后就可以用FWT 优化 成2^n * n

这还有个用子集反演的,是什么啊??

http://blog.csdn.net/QWsin/article/details/55054071

#include<cstdio>
#include<algorithm> using namespace std; typedef long long LL; char s[][]; LL a[],b[],c[]; int count(int i)
{
int sum=;
while(i) sum+=i&,i>>=;
return sum;
} void FWT_xor(LL *a,int n)
{
LL x,y;
for(int d=;d<n;d<<=)
for(int m=d<<,i=;i<n;i+=m)
for(int j=;j<d;++j)
{
x=a[i+j]; y=a[i+j+d];
a[i+j]=x+y; a[i+j+d]=x-y;
}
} void IFWT_xor(LL *a,int n)
{
LL x,y;
for(int d=;d<n;d<<=)
for(int m=d<<,i=;i<n;i+=m)
for(int j=;j<d;++j)
{
x=a[i+j]; y=a[i+j+d];
a[i+j]=x+y>>; a[i+j+d]=x-y>>;
}
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i) scanf("%s",s[i]+);
int state;
for(int i=;i<=m;++i)
{
state=;
for(int j=;j<=n;++j)
if(s[j][i]=='') state|=<<j-;
++a[state];
}
int S=<<n,sum;
for(int i=;i<S;++i)
{
sum=count(i);
b[i]=min(sum,n-sum);
}
FWT_xor(a,S);
FWT_xor(b,S);
for(int i=;i<S;++i) c[i]=a[i]*b[i];
IFWT_xor(c,S);
LL ans=n*m;
for(int i=;i<S;++i) ans=min(ans,c[i]);
printf("%I64d",ans);
}

Codeforces 662 C. Binary Table的更多相关文章

  1. CROC 2016 - Final Round [Private, For Onsite Finalists Only] C. Binary Table FWT

    C. Binary Table 题目连接: http://codeforces.com/problemset/problem/662/C Description You are given a tab ...

  2. 【CF662C】Binary Table(FWT)

    [CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...

  3. 【CF662C】Binary Table 按位处理

    [CF662C]Binary Table 题意:给你一个$n\times m$的01网格,你可以进行任意次操作,每次操作是将一行或一列的数都取反,问你最多可以得到多少个1? $n\le 20,m\le ...

  4. [CF662C Binary Table][状压+FWT]

    CF662C Binary Table 一道 FWT 的板子-比较难想就是了 有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) ...

  5. CF-1440C2 Binary Table (Hard Version) (构造,模拟)

    Binary Table (Hard Version) 题意 \(n*m(2\le n,m\le 100)\) 的01矩阵,每次可以选择一个宽度为2的子矩阵,将四个位置中的任意3个进行翻转,即0变1, ...

  6. CF662C Binary Table【FWT】

    CF662C Binary Table 题意: 给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\) \(n\le 20, m\ ...

  7. 「CF662C」 Binary Table

    「CF662C」 Binary Table 题目链接 题目所给的 \(n\) 很小,于是我们可以考虑这样一种朴素做法:暴力枚举第 \(i\) 行是否翻转,这样每一行的状态就确定了,这时取每一列 \(0 ...

  8. Codeforces #662C Binary Table

    听说这是一道$ Tourist$现场没出的题 Codeforces #662C 题意: 给定$n*m的 01$矩阵,可以任意反转一行/列($0$变$1$,$1$变$0$),求最少$ 1$的数量 $ n ...

  9. [CodeForces 663E] - Binary Table(FWT)

    题目 Codeforces 题目链接 分析 大佬博客,写的很好 本蒟蒻就不赘述了,就是一个看不出来的异或卷积 精髓在于 mask对sta的影响,显然操作后的结果为mask ^ sta AC code ...

随机推荐

  1. 4、Docker数据管理

    一.挂载类型 1.volumes Docker管理宿主机文件系统的一部分(/var/lib/docker/volumes).保存数据的最佳方式. 使用场景:将容器中的数据持久化到宿主机,比如容器是my ...

  2. 设计模式 笔记 单例模式 Singleton

    //---------------------------15/04/09---------------------------- //Singleton 单例模式-----对象创建型模式 /* 1: ...

  3. JS基础内容小结(DOM&&BOM)(二)

    元素.childNodes:只读 属性 子节点列表集合 元素.nodeType:只读 属性 当前元素下的节点类型 元素.attributes : 只读 属性 属性列表集合 元素.children: 只 ...

  4. VirtualBox虚拟机怎么导入已经存在的vdi文件

    VirtualBox虚拟机怎么导入已经存在的vdi文件 第一章 1.原因 早上一不小心将virtualBox 卸载了,(不知道怎么了, 里面得虚拟机全部都没有了,但是vdi文件还在) 2.解决办法 直 ...

  5. 212. Space Replacement【LintCode by java】

    Description Write a method to replace all spaces in a string with %20. The string is given in a char ...

  6. 利用Python实现App自动签到领取积分

    要自动签到,最简单的是打开页面分析请求,然后我们用脚本实现请求的自动化.但是发现食行没有页面,只有 APP,这不是一个好消息,这意味着需要抓包处理了. 有需要Python学习资料的小伙伴吗?小编整理[ ...

  7. 关于go v1.11安装后出现不能正常运行测试程序的问题

    本人最近安装go1.11后出现上述问题,没有找到原因,可能之前安装过的旧的版本在windows下环境变量设置出现了问题,修改后仍然无效,后来删除所有安装版本,及go环境变量,重新下载1.10版本进行安 ...

  8. Flask入门的第一个项目

    前言: Flask简介:Flask是一个使用 Python 编写的轻量级 Web 应用框架,基于 WerkzeugWSGI工具箱和 Jinja2模板引擎. 想要学习flask,又非常迷茫,不知如何下手 ...

  9. Daily Scrum NO.8

    工作概况 今天是周六,虽然由于工作紧张要求这一日也定为工作日,但是也许是因为昨日大家工作做得较多或者周末的缘故,今天的进展状况并不理想.线程池和异常清理器的后端已经完成,而清理器的界面和动态爬取仍旧没 ...

  10. Linux内核分析第四周总结

    用户态,内核态和中断处理过程 库函数将系统调用封装起来 用户态和内核态的差别: 在内核态时,cs和eip的值可以是任意地址,但在用户态时只能访问0x00000000 - 0xbfffffff,0x00 ...