【坐在马桶上看算法】算法6:只有五行的Floyd最短路算法
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if ( e[i][j] > e[i][]+e[][j] )
e[i][j] = e[i][]+e[][j];
}
}
//经过1号顶点
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if (e[i][j] > e[i][]+e[][j]) e[i][j]=e[i][]+e[][j]; //经过2号顶点
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if (e[i][j] > e[i][]+e[][j]) e[i][j]=e[i][]+e[][j];
for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
#include <stdio.h>
int main()
{
int e[][],k,i,j,n,m,t1,t2,t3;
int inf=; //用inf(infinity的缩写)存储一个我们认为的正无穷值
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m); //初始化
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(i==j) e[i][j]=;
else e[i][j]=inf; //读入边
for(i=;i<=m;i++)
{
scanf("%d %d %d",&t1,&t2,&t3);
e[t1][t2]=t3;
} //Floyd-Warshall算法核心语句
for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j] )
e[i][j]=e[i][k]+e[k][j]; //输出最终的结果
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
printf("%10d",e[i][j]);
}
printf("\n");
} return ;
}
//Floyd-Warshall算法核心语句
for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(e[i][k]<inf && e[k][j]<inf && e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
【一周一算法】算法6:只有五行的Floyd最短路算法
http://bbs.ahalei.com/thread-4554-1-1.html
(出处: 啊哈磊_编程从这里起步)
【坐在马桶上看算法】算法6:只有五行的Floyd最短路算法的更多相关文章
- 【啊哈!算法】算法6:只有五行的Floyd最短路算法
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有 ...
- 【坐在马桶上看算法】算法7:Dijkstra最短路算法
上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径 ...
- 【坐在马桶上看算法】算法4:队列——解密QQ号
新学期开始了,小哈是小哼的新同桌(小哈是个小美女哦~),小哼向小哈询问QQ号,小哈当然不会直接告诉小哼啦,原因嘛你懂的.所以小哈给了小哼一串加密过的数字,同时小哈也告诉了小哼解密规则. ...
- 只有五行的Floyd最短路算法
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有 ...
- 仅仅有五行的Floyd最短路算法
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,例如以下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道随意两个城市之前的最短路程. 上图中有4个城市8条公路,公路上的数 ...
- [转]坐在马桶上看算法:只有五行的Floyd最短路算法
此算法由Robert W. Floyd(罗伯特·弗洛伊德)于1962年发表在“Communications of the ACM”上.同年Stephen Warshall(史蒂芬·沃舍尔)也独立发表了 ...
- Floyd最短路算法
Floyd最短路算法 ----转自啊哈磊[坐在马桶上看算法]算法6:只有五行的Floyd最短路算法 暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计 ...
- 算法专题 | 10行代码实现的最短路算法——Bellman-ford与SPFA
今天是算法数据结构专题的第33篇文章,我们一起来聊聊最短路问题. 最短路问题也属于图论算法之一,解决的是在一张有向图当中点与点之间的最短距离问题.最短路算法有很多,比较常用的有bellman-ford ...
- Dijkstra最短路算法
Dijkstra最短路算法 --转自啊哈磊[坐在马桶上看算法]算法7:Dijkstra最短路算法 上节我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最 ...
随机推荐
- YOLO(You Only Look Once)
参考 YOLO(You Only Look Once)算法详解 YOLO算法的原理与实现 一.介绍 YOLO算法把物体检测问题处理成回归问题,用一个卷积神经网络结构就可以从输入图像直接预测boundi ...
- 人民币-欧元预测(ARIMA算法)代码
import pandas as pd import matplotlib.pyplot as plt import statsmodels as sm from statsmodels.graphi ...
- JS基础(四)运算符
一.比较运算符 1.== : 判断两边值是否相等 2.>= : 判断左边的值是否大于或等于右边的值 3.<= : 判断左边边的值是否小于或等于右边的值 4.> : 判断左边的值是 ...
- Trace 2018徐州赛区网络预赛
题意: 每次给出一个点,然后就会形成两条线,如果后面的矩形覆盖了前面的边,那么这条边就消失了, 最后求剩下的边是多少 题目确保不会完全覆盖 也没有一个矩形在另一个矩形里面 即对于 X1,Y1 X2, ...
- 【刷题】BZOJ 2734 [HNOI2012]集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- 首先java中集合类主要有两大分支
本文仅分析部分原理和集合类的特点,不分析源码,旨在对java的集合类有一个整体的认识,理解各个不同类的关联和区别,让大家在不同的环境下学会选择不同的类来处理. Java中的集合类包含的内容很多而且很重 ...
- HGOI20181031 模拟题解
sol:第一题就DP?!然后写了O(n^2) dp再考虑优化!!!(尽量部分分带上!!!) 我写了正确的dp然后优化错了,具体的dp方法是考虑到对于右侧到左侧他是没有后效性的 所以定义f[i]为i及以 ...
- CRM 常用SQL 脚本
1. 查询角色.用户 SELECT DISTINCT DomainName, u.FullName , u.FirstName, u.InternalEM ...
- 基于Maven构建Web项目
1.下载Maven,并配置好环境变量 2.打开命令行窗口,输入以下命令构建Maven Web项目 mvn archetype:generate -DgroupId=com.hello -Dartifa ...
- ASP.Net执行cmd命令的实现代码
using System; using System.Collections; using System.Configuration; using System.Data; using System. ...