显然可以离线主席树,这里用莫队+分块做。分块的一个重要思想是实现修改与查询时间复杂度的均衡,这里莫队和分块互相弥补。

考虑暴力的分块做法,首先显然大于n的数直接忽略,于是将值域分成sqrt(n)份,每块记录块内的所有值是否在此当前区间内都已存在。

这样每次暴力从L到R分别放入这个表,最后从小到大询问每个块是否已满,若没有则在块内枚举第一个不存在的数。

注意到这样的总修改复杂度O(nq),查询复杂度O(qsqrt(n))。

考虑莫队,将序列分成sqrt(n)份,使总修改复杂度变为O(nsqrt(n))。查询复杂度不变O(qsqrt(n))。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,K=;
int n,m,B,a[N],b[N],ans[N],cnt[K],s[K][K];
struct P{ int l,r,id; }q[N]; bool cmp(const P &x,const P &y){ return b[x.l]!=b[y.l] ? b[x.l]<b[y.l] : x.r<y.r; } void add(int x){
if (x>n) return;
int t=x%B; s[b[x]][t]++; if (s[b[x]][t]==) cnt[b[x]]++;
} void del(int x){
if (x>n) return;
int t=x%B; s[b[x]][t]--; if (s[b[x]][t]==) cnt[b[x]]--;
} int Que(){
rep(i,,n/B+){
int t=min(n,i*B-)-(i-)*B+;
if (cnt[i]==t) continue;
rep(j,(i-)*B,min(n,i*B-)) if (!s[i][j%B]) return j;
}
return n+;
} int main(){
freopen("bzoj3585.in","r",stdin);
freopen("bzoj3585.out","w",stdout);
scanf("%d%d",&n,&m); B=; b[]=;
rep(i,,n) scanf("%d",&a[i]),b[i]=i/B+;
rep(i,,m) scanf("%d%d",&q[i].l,&q[i].r),q[i].id=i;
sort(q+,q+m+,cmp); int L=,R=;
rep(i,,m){
while (R<q[i].r) R++,add(a[R]);
while (L>q[i].l) L--,add(a[L]);
while (R>q[i].r) del(a[R]),R--;
while (L<q[i].l) del(a[L]),L++;
ans[q[i].id]=Que();
}
rep(i,,m) printf("%d\n",ans[i]);
return ;
}

[BZOJ3585]mex(莫队+分块)的更多相关文章

  1. 【BZOJ3339&&3585】mex [莫队][分块]

    mex Time Limit: 20 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 有一个长度为n的数组{a1,a2,. ...

  2. 【BZOJ3585/3339】mex 莫队算法+分块

    [BZOJ3585]mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. ...

  3. [BZOJ 3585] mex 【莫队+分块】

    题目链接:BZOJ - 3585 题目分析 区间mex,即区间中没有出现的最小自然数. 那么我们使用一种莫队+分块的做法,使用莫队维护当前区间的每个数字的出现次数. 然后求mex用分块,将权值分块(显 ...

  4. 【bzoj4129】Haruna’s Breakfast 带修改树上莫队+分块

    题目描述 给出一棵树,点有点权.支持两种操作:修改一个点的点权,查询链上mex. 输入 第一行包括两个整数n,m,代表树上的结点数(标号为1~n)和操作数.第二行包括n个整数a1...an,代表每个结 ...

  5. Bzoj 3236: [Ahoi2013]作业 莫队,分块

    3236: [Ahoi2013]作业 Time Limit: 100 Sec  Memory Limit: 512 MBSubmit: 1113  Solved: 428[Submit][Status ...

  6. BZOJ_3585_mex && BZOJ_3339_Rmq Problem_莫队+分块

    BZOJ_3585_mex && BZOJ_3339_Rmq Problem_莫队+分块 Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一 ...

  7. BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块

    BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块 Description Autumn和Bakser又在研究Gty的妹子序列了 ...

  8. BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块

    题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...

  9. CFGym101138D Strange Queries 莫队/分块

    正解:莫队/分块 解题报告: 传送门 ummm这题耗了我一天差不多然后我到现在还没做完:D 而同机房的大佬用了一个小时没有就切了?大概这就是大佬和弱鸡的差距趴QAQ 然后只是大概写下思想好了因为代码我 ...

随机推荐

  1. [六字真言]5.咪.功力不足,学习前端JavaScript异常

    A Guide to Proper Error Handling in JavaScript 这是关于JavaScript中异常处理的故事.如果你相信 墨菲定律 ,那么任何事情都可能出错,不,一定会出 ...

  2. git安装与初始化

    命令行 Git有多重方式使用 原生命令行,才能使用git所有命令,会git命令再去用gui图形工具,完全无压力 GUI图形软件,只是实现了git的部分功能,以减免操作难度,难以记住git原生命令 不同 ...

  3. docker重新安装后无法启动

    问题描述: docker版本升级或者重新安装后,无法启动服务,出现如下报错: level=error msg="[graphdriver] prior storage driver over ...

  4. Javascript摸拟自由落体与上抛运动 说明!

    JavaScript 代码 //**************************************** //名称:Javascript摸拟自由落体与上抛运动! //作者:Gloot //邮箱 ...

  5. 20155303 2016-2017-2 《Java程序设计》第六周学习总结

    20155303 2016-2017-2 <Java程序设计>第六周学习总结 课堂笔记 高效学习法推荐 看视频学习(2h)→ 以代码为中心看课本,思考运行结果并验证(3h)→ 课后作业验证 ...

  6. SQLSTATE[42000]

    SQLSTATE[42000]: Syntax error or access violation: 1140 Mixing of GROUP columns (MIN(),MAX(),COUNT() ...

  7. UVALive 6467

    题目链接 : http://acm.sdibt.edu.cn/vjudge/contest/view.action?cid=2186#problem/C 题意:对于斐波那契数列,每个数都mod m , ...

  8. HDU 2680 Choose the best route 最短路问题

    题目描述:Kiki想去他的一个朋友家,他的朋友家包括所有的公交站点一共有n 个,一共有m条线路,线路都是单向的,然后Kiki可以在他附近的几个公交站乘车,求最短的路径长度是多少. 解题报告:这道题的特 ...

  9. hdu GuGuFishtion 6390 数论 欧拉函数

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=6390 直接开始证明: 我们设…………………………………….....…...............………… ...

  10. Mysql导入脚本失败,提示需要SUPER权限

    1.删除: /*!50013 DEFINER=`root`@`localhost` SQL SECURITY DEFINER */ 2.查看增删函数有没有重复 3.删除: set GLOBAL log ...