StanFord ML 笔记 第九部分
第九部分:
1.高斯混合模型
2.EM算法的认知
1.高斯混合模型
之前博文已经说明:http://www.cnblogs.com/wjy-lulu/p/7009038.html
2.EM算法的认知
2.1理论知识之前已经说明:http://www.cnblogs.com/wjy-lulu/p/7010258.html
2.2公式的推导
2.2.1. Jensen不等式
回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数。如果或者,那么称f是严格凸函数。
Jensen不等式表述如下:
如果f是凸函数,X是随机变量,那么
特别地,如果f是严格凸函数,那么当且仅当,也就是说X是常量。
这里我们将简写为。
如果用图表示会很清晰:
图中,实线f是凸函数,X是随机变量,有0.5的概率是a,有0.5的概率是b。(就像掷硬币一样)。X的期望值就是a和b的中值了,图中可以看到成立。
当f是(严格)凹函数当且仅当-f是(严格)凸函数。
Jensen不等式应用于凹函数时,不等号方向反向,也就是。
2.2.2 EM算法
给定的训练样本是,样例间独立,我们想找到每个样例隐含的类别z,能使得p(x,z)最大。p(x,z)的最大似然估计如下:
第一步是对极大似然取对数,第二步是对每个样例的每个可能类别z求联合分布概率和。但是直接求一般比较困难,因为有隐藏变量z存在,但是一般确定了z后,求解就容易了。
EM是一种解决存在隐含变量优化问题的有效方法。竟然不能直接最大化,我们可以不断地建立的下界(E步),然后优化下界(M步)。这句话比较抽象,看下面的。
对于每一个样例i,让表示该样例隐含变量z的某种分布,满足的条件是。(如果z是连续性的,那么是概率密度函数,需要将求和符号换做积分符号,这里概率论书上也有说明,看个例子大家就明白)。比如要将班上学生聚类,假设隐藏变量z是身高,那么就是连续的高斯分布。如果按照隐藏变量是男女,那么就是伯努利分布了。这里就是上面说的Z的概率和为1.
可以由前面阐述的内容得到下面的公式:
(1)到(2)比较直接,就是分子分母同乘以一个相等的函数。(2)到(3)利用了Jensen不等式,考虑到是凹函数(二阶导数小于0),而且
就是的期望(回想期望公式中的Lazy Statistician规则):
Lazy Statistician:这个公式没啥稀奇的,就是连续概率函数的期望公式,每本概率论书上都有的!
设Y是随机变量X的函数(g是连续函数),那么 (1) X是离散型随机变量,它的分布律为,k=1,2,…。若绝对收敛,则有 (2) X是连续型随机变量,它的概率密度为,若绝对收敛,则有 |
对应于上述问题,Y是,X是,是,g是到的映射。这样解释了式子(2)中的期望,再根据凹函数时的Jensen不等式:
可以得到(3)。
注释:这里(3)的推到没有什么捷径,大家动手一下就可以了,连续函数的期望+Log函数性质+Jensen不等式,运用这三个公式去推导!
这个过程可以看作是对求了下界。对于的选择,有多种可能,那种更好的?假设已经给定,那么的值就决定于和了。我们可以通过调整这两个概率使下界不断上升,以逼近的真实值,那么什么时候算是调整好了呢?当不等式变成等式时,说明我们调整后的概率能够等价于了。按照这个思路,我们要找到等式成立的条件。根据Jensen不等式,要想让等式成立,需要让随机变量变成常数值,这里得到:
注释:开投的Jensen正面已经有说明!
c为常数,不依赖于。对此式子做进一步推导,我们知道,那么也就有,(多个等式分子分母相加不变,这个认为每个样例的两个概率比值都是c),那么有下式:
此,我们推出了在固定其他参数后,的计算公式就是后验概率,解决了如何选择的问题。这一步就是E步,建立的下界。接下来的M步,就是在给定后,调整,去极大化的下界(在固定后,下界还可以调整的更大)。那么一般的EM算法的步骤如下:
循环重复直到收敛 { (E步)对于每一个i,计算 (M步)计算 |
那么究竟怎么确保EM收敛?假定和是EM第t次和t+1次迭代后的结果。如果我们证明了,也就是说极大似然估计单调增加,那么最终我们会到达最大似然估计的最大值。下面来证明,选定后,我们得到E步
这一步保证了在给定时,Jensen不等式中的等式成立,也就是
然后进行M步,固定,并将视作变量,对上面的求导后,得到,这样经过一些推导会有以下式子成立:
注释:其实我们做的每一步都是求每个位置的局部极大值,这里肯定是大于等于前面一个值的。
解释第(4)步,得到时,只是最大化,也就是的下界,而没有使等式成立,等式成立只有是在固定,并按E步得到时才能成立。
况且根据我们前面得到的下式,对于所有的和都成立
第(5)步利用了M步的定义,M步就是将调整到,使得下界最大化。因此(5)成立,(6)是之前的等式结果。
这样就证明了会单调增加。一种收敛方法是不再变化,还有一种就是变化幅度很小。
再次解释一下(4)、(5)、(6)。首先(4)对所有的参数都满足,而其等式成立条件只是在固定,并调整好Q时成立,而第(4)步只是固定Q,调整,不能保证等式一定成立。(4)到(5)就是M步的定义,(5)到(6)是前面E步所保证等式成立条件。也就是说E步会将下界拉到与一个特定值(这里)一样的高度,而此时发现下界仍然可以上升,因此经过M步后,下界又被拉升,但达不到与另外一个特定值一样的高度,之后E步又将下界拉到与这个特定值一样的高度,重复下去,直到最大值。
如果我们定义
从前面的推导中我们知道,EM可以看作是J的坐标上升法,E步固定,优化,M步固定优化。
参考:https://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html#2103308
StanFord ML 笔记 第九部分的更多相关文章
- StanFord ML 笔记 第三部分
第三部分: 1.指数分布族 2.高斯分布--->>>最小二乘法 3.泊松分布--->>>线性回归 4.Softmax回归 指数分布族: 结合Ng的课程,在看这篇博文 ...
- StanFord ML 笔记 第八部分
第八部分内容: 1.正则化Regularization 2.在线学习(Online Learning) 3.ML 经验 1.正则化Regularization 1.1通俗解释 引用知乎作者:刑无刀 ...
- StanFord ML 笔记 第五部分
1.朴素贝叶斯的多项式事件模型: 趁热打铁,直接看图理解模型的意思:具体求解可见下面大神给的例子,我这个是流程图. 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate ...
- StanFord ML 笔记 第一部分
本章节内容: 1.学习的种类及举例 2.线性回归,拟合一次函数 3.线性回归的方法: A.梯度下降法--->>>批量梯度下降.随机梯度下降 B.局部线性回归 C.用概率证明损失函数( ...
- StanFord ML 笔记 第十部分
第十部分: 1.PCA降维 2.LDA 注释:一直看理论感觉坚持不了,现在进行<机器学习实战>的边写代码边看理论
- StanFord ML 笔记 第六部分&&第七部分
第六部分内容: 1.偏差/方差(Bias/variance) 2.经验风险最小化(Empirical Risk Minization,ERM) 3.联合界(Union bound) 4.一致收敛(Un ...
- StanFord ML 笔记 第四部分
第四部分: 1.生成学习法 generate learning algorithm 2.高斯判别分析 Gaussian Discriminant Analysis 3.朴素贝叶斯 Navie Baye ...
- StanFord ML 笔记 第二部分
本章内容: 1.逻辑分类与回归 sigmoid函数概率证明---->>>回归 2.感知机的学习策略 3.牛顿法优化 4.Hessian矩阵 牛顿法优化求解: 这个我就不记录了,看到一 ...
- (转载)[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation
[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation http://blog.csdn.net/walilk/articl ...
随机推荐
- 学习大数据基础框架hadoop需要什么基础
什么是大数据?进入本世纪以来,尤其是2010年之后,随着互联网特别是移动互联网的发展,数据的增长呈爆炸趋势,已经很难估计全世界的电子设备中存储的数据到底有多少,描述数据系统的数据量的计量单位从MB(1 ...
- windows系统如何设置域名解析
C:\Windows\System32\drivers\etc
- MySQL 5.7 Invalid default value for 'CREATE_TIME'报错的解决方法
出处:http://blog.itpub.net/15498/viewspace-2136006/ 由于数据库的升级,今天在执行从MySQL 5.6导出来的SQL文件时报错: mysql> so ...
- Vivado HLS初识---阅读《vivado design suite tutorial-high-level synthesis》(3)
Vivado HLS初识---阅读<vivado design suite tutorial-high-level synthesis>(3) 优化lab1 1.创建工程,开启HLS 运行 ...
- [Android] JNI中的Local Reference
参考文章:<在 JNI 编程中避免内存泄漏> 一.Local Reference 深层解析 JNI Local Reference 的生命期是在 native method 的执行期(从 ...
- 开始使用GoJS
GoJS是一个用于实现交互式图表的JavaScript库.本页将向您展示使用GoJS的必要条件. 由于GoJS是一个依赖于HTML5功能的JavaScript库,因此您需要确保您的页面声明它是一个HT ...
- 【springmvc】之使用jQuery接收前端传入List对象
前端代码: <form id="person_add" method="post" action="user"> <tab ...
- Ubuntu 14.10 下安装伪分布式hbase 0.99.0
HBase 安装分为:单击模式,伪分布式,完全分布式,在单机模式中,HBase使用本地文件系统而不是HDFS ,所有的服务和zooKeeper都运作在一个JVM中.本文是安装的伪分布式. 安装步骤如下 ...
- 【C#】C#操作Excel文件(转)
实现C#与Excel文件的交互操作,实现以下功能: 1.DataTable 导出到 Excel文件 2.Model数据实体导出到 Excel文件[List<Model>] 3.导出数据到模 ...
- C#、AE开发入门之打开CAD文件并显示
加载CAD文件稍显复杂一些,总体还是和前面基本类似 private void button3_Click(object sender, EventArgs e) { axMapControl1.Cle ...