BZOJ 1951 【SDOI2010】 古代猪文
题目链接:古代猪文
好久没写博客了,这次就先写一篇吧……
题面好鬼……概括起来就是:给出\(N,G(\leqslant 10^9)\),求:\[G^{\sum_{d|n}\binom{n}{d}} \bmod p \]
其中\(p=999911659\),是一个质数。
首先,当\(G\neq p\)时,由欧拉定理可知\[G^x\equiv G^{x\bmod(p-1)}(\bmod p)\]
然后我们实际上就是要快速计算\[\sum_{d|n}\binom{n}{d} \bmod(p-1)\]
由于\(p-1\)不是一个质数,我们可以把它给质因数分解了,得到\(p-1=2\times 3\times 4679\times 35617\)
然后分别在模这些数的情况下用\(Lucas\)定理算出组合数,再中国剩余定理合并。用中国剩余定理的时候注意有多个模数,不要弄混了。
复习一下\(Lucas\)定理,当\(p\)为质数时,有:\[\binom{a}{b} \equiv \binom{\lfloor \frac{a}{p} \rfloor}{\lfloor \frac{b}{p} \rfloor} \binom{a\bmod p}{b\bmod p}(\bmod p)\]
中国剩余定理复习:xlightgod的博客、Mashirosky的博客
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define mod 999911659
#define maxn 40010 using namespace std;
typedef long long llg; int n,g,pr,pk,pri[4]={2,3,4679,35617};
llg jie[4][maxn],ni[4][maxn],zhi; llg mi(llg a,int b){
llg s=1;
while(b){
if(b&1) s=s*a%pr;
a=a*a%pr; b>>=1;
}
return s;
} llg C(int x,int y){return x<y?0:jie[pk][x]*ni[pk][y]%pr*ni[pk][x-y]%pr;}
llg lucas(int x,int y){
if(!y) return 1; if(x<y) return 0;
return lucas(x/pr,y/pr)*C(x%pr,y%pr)%pr;
} llg hebing(int x,int y){
llg now=0;
for(int k=0;k<4;k++){
pr=pri[k],pk=k;
now+=(mod-1)/pr*mi((mod-1)/pr,pr-2)*lucas(x,y);
now%=mod-1;
}
return now;
} int main(){
File("a");
scanf("%d %d",&n,&g);
if(mod==g){putchar('0');return 0;}
for(int k=0;k<4;k++){
jie[k][0]=1; pr=pri[k]; pk=k;
for(int i=1;i<pr;i++) jie[k][i]=jie[k][i-1]*i%pr;
ni[k][pr-1]=mi(jie[k][pr-1],pr-2);
for(int i=pr-1;i;i--) ni[k][i-1]=ni[k][i]*i%pr;
}
for(int d=1,l=sqrt(n);d<=l;d++)
if(n%d==0){
zhi+=hebing(n,d);
if(n/d!=d) zhi+=hebing(n,n/d);
zhi%=(mod-1);
}
pr=mod; printf("%lld",mi(g,zhi));
return 0;
}
BZOJ 1951 【SDOI2010】 古代猪文的更多相关文章
- BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...
- BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2194 Solved: 919[Submit][Status] ...
- 【刷题】BZOJ 1951 [Sdoi2010]古代猪文
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- bzoj 1951 [Sdoi2010]古代猪文(数论知识)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1951 [思路] 一道优(e)秀(xin)的数论题. 首先我们要求的是(G^sigma{ ...
- bzoj 1951 [Sdoi2010]古代猪文 ——数学综合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 数学综合题. 费马小定理得指数可以%999911658,又发现这个数可以质因数分解.所 ...
- bzoj 1951: [Sdoi2010]古代猪文
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...
- BZOJ.1951.[SDOI2010]古代猪文(费马小定理 Lucas CRT)
题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\( ...
- bzoj 1951: [Sdoi2010]古代猪文 【中国剩余定理+欧拉定理+组合数学+卢卡斯定理】
首先化简,题目要求的是 \[ G^{\sum_{i|n}C_{n}^{i}}\%p \] 对于乘方形式快速幂就行了,因为p是质数,所以可以用欧拉定理 \[ G^{\sum_{i|n}C_{n}^{i} ...
- BZOJ 1951 [SDOI2010]古代猪文 (组合数学+欧拉降幂+中国剩余定理)
题目大意:求$G^{\sum_{m|n} C_{n}^{m}}\;mod\;999911659\;$的值$(n,g<=10^{9})$ 并没有想到欧拉定理.. 999911659是一个质数,所以 ...
- BZOJ 1951: [Sdoi2010]古代猪文 ExCRT+欧拉定理+Lucas
欧拉定理不要忘记!! #include <bits/stdc++.h> #define N 100000 #define ll long long #define ull unsigned ...
随机推荐
- mybatis按姓名或手机号搜索
1.AND ((USER_NAME LIKE '%'||#{searchKey}||'%') OR (MOBILE_PHONE LIKE '%'||#{searchKey}||'%'))2. < ...
- Redis对于key的操作命令
del key1 key2 ... Keyn 作用: 删除1个或多个键 返回值: 不存在的key忽略掉,返回真正删除的key的数量 rename key newkey 作用: 给key赋一个新的ke ...
- ST-LINK使用注意
利用ST-LINK下载程序注意事项: 1.接线 按照上面图对着自己的开发板连接相应的引脚就可以了. 2.keil5配置 线连接完之后,要对自己的工程进行相关的 配置才能正确进行下载. 首先选择ST-L ...
- centos6安装postgresql-(2)
1.Install yum install https://download.postgresql.org/pub/repos/yum/9.6/redhat/rhel-6-x86_64/pgdg-ce ...
- 不走标准路的微软:少一个斜杠的URI Path
今天又被微软不按标准的做法折腾了一下,写篇博文抱怨一下. 我们先来看一下IETF(Internet Engineering Task Force)对URI结构的标准定义(链接): 注意上面的path部 ...
- FW:stash install
先下载破解安装包.http://pan.baidu.com/s/1mgumBbE 我的安装环境. 说明下,经过我的测试. 如果系统内存低于 512M, 就不要折腾了,非常卡. 推荐 2048M 内存. ...
- python基础之练习题(二)
九九乘法表 i = 0 #while 九九乘法表 j = 0 while i < 9: i += 1 while j<9: j += 1 sum = i + j total="% ...
- 006-spring cache-缓存实现-01-原生实现
一.原生实现 1.1.pom <!-- 缓存 --> <dependency> <groupId>org.springframework.boot</grou ...
- [Err]1418 This function has none of DETERMINISTIC,NO SQL,or R
----------------------------------------------------------------------------------------------- ...
- docker——Etcd高可用键值对数据库
一.简介 Etcd按照官方介绍: Etcd is a distributed, consistent key-value store for shared configuration and serv ...