发现好像写了一个洛谷上最快的分块

这道题曾经一度感觉非常不可做,因为\(LCT\)的标签以及没有什么思路的分块

但是自从\(yy\)出来一个错误的哈希冲突分块之后(修改的时候挂掉了),就发现这道题不就是我曾经的那个错误的思路吗

这种要往后不断的跳的题目,我们暴力往后跳的话肯定是会爆炸的,因为这样的复杂度完全取决于询问

于是我们就分块好了,一次跳一个不行,那么我们就一次跳一个块好了

我们设\(b[i]\)表示从\(i\)这个位置开始跳,直到跳出所在块的跳跃次数是多少,\(c[i]\)表示\(i\)这个位置跳出所在块之后在哪一个位置

这个样子的话我们就能做到一次跳一个块了,于是现在询问的复杂度有了保证\

这两个数组显然可以预处理出来,因为\(i\)往后跳一部肯定到达了\(i+a[i]\)这个位置,于是就有\(b[i]=b[i+a[i]]+1\),\(c[i]=c[i+a[i]]\),对于每一个块倒着预处理就好了

之后就是修改,因为这里只有单点修改,于是我们直接拎出那个块来,修改一下,像预处理那样暴力重构整个块就好了

复杂度也是\(O(\sqrt{n})\)

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define re register
#define maxn 200005
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int a[maxn];
int b[maxn],c[maxn];
int l[maxn],r[maxn];
int len,Q,n,tot;
inline void Build_Block()
{
len=std::sqrt(n);
int k=1;
while(k<=n)
{
l[++tot]=k;
r[tot]=min(n,l[tot]+len-1);
k=r[tot]+1;
for(re int i=r[tot];i>=l[tot];--i)
if(i+a[i]>r[tot]) b[i]=1,c[i]=i+a[i];
else b[i]=b[i+a[i]]+1,c[i]=c[i+a[i]];
}
}
inline int find(int x)
{
if(x%len==0) return x/len;
return x/len+1;
}
inline int query(int x)
{
int ans=0;
while(x<=n)
{
ans+=b[x];
x=c[x];
}
return ans;
}
inline void change(int x,int val)
{
int t=find(x);
a[x]=val;
for(re int i=x;i>=l[t];--i)
if(i+a[i]>r[t]) b[i]=1,c[i]=i+a[i];
else b[i]=b[i+a[i]]+1,c[i]=c[i+a[i]];
}
int main()
{
n=read();
for(re int i=1;i<=n;i++)
a[i]=read();
Build_Block();
Q=read();
int opt,x,y;
while(Q--)
{
opt=read(),x=read();
if(opt==1) printf("%d\n",query(x+1));
else y=read(),change(x+1,y);
}
return 0;
}

【[HNOI2010]弹飞绵羊】的更多相关文章

  1. P3203 [HNOI2010]弹飞绵羊(LCT)

    P3203 [HNOI2010]弹飞绵羊 LCT板子 用一个$p[i]$数组维护每个点指向的下个点. 每次修改时cut*1+link*1就解决了 被弹出界时新设一个点,权为0,作为终点表示出界点.其他 ...

  2. [HNOI2010] 弹飞绵羊 (分块)

    [HNOI2010] 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上 ...

  3. 洛谷 P3203 [HNOI2010]弹飞绵羊 解题报告

    P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一 ...

  4. [BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree)

    [BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree) 题面 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一 ...

  5. 「洛谷P3202」[HNOI2010]弹飞绵羊 解题报告

    P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一 ...

  6. [Luogu P3203] [HNOI2010]弹飞绵羊 (LCT维护链的长度)

    题面 传送门:洛谷 Solution 这题其实是有类似模型的. 我们先考虑不修改怎么写.考虑这样做:每个点向它跳到的点连一条边,最后肯定会连成一颗以n+1为根的树(我们拿n+1代表被弹出去了).题目所 ...

  7. P3203 [HNOI2010]弹飞绵羊 —— 懒标记?分块?LCT?...FAQ orz

    好久没写博客了哈,今天来水一篇._(:з」∠)_ 题目 :弹飞绵羊(一道省选题) 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏 ...

  8. P3203 [HNOI2010]弹飞绵羊 —— 懒标记?分块?

    好久没写博客了哈,今天来水一篇._(:з」∠)_ 题目 :弹飞绵羊(一道省选题) 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏 ...

  9. 洛谷P3203 [HNOI2010] 弹飞绵羊 [LCT]

    题目传送门 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...

  10. P3203 [HNOI2010]弹飞绵羊(LCT)

    弹飞绵羊 题目传送门 解题思路 LCT. 将每个节点的权值设为\(1\),连接\(i\)和\(i+ki\),被弹飞就连上\(n\),维护权值和\(sum[]\).从\(j\)弹飞需要的次数就是\(sp ...

随机推荐

  1. Bundle传递数据,Handler更新UI

    Bundle主要用于传递数据:它保存的数据,是以key-value(键值对)的形式存在的. Bundle经常使用在Activity之间或者线程间传递数据,传递的数据可以是boolean.byte.in ...

  2. 关于一次美团java程序员招聘面试的经历

    美团一面: 中间省略掉大概几个问题,因为我不记得了,下面记得的基本都是我没怎么答好的. 1.了解SOA,微服务吗? 2.分布式系统如何负载均衡?如何确定访问的资源在哪个服务器上? 一.轮询.二.随机. ...

  3. Shiro官方快速入门10min例子源码解析框架1-初始化

    Shiro,一个易用的Java安全框架,主要集合身份认证.授权.加密和session管理的功能. 这系文章主要简介Shiro架构,并通过官方的quickstart例程分析最简实现下Shiro的工作流程 ...

  4. 认识Groovy

    什么是groovy: Groovy 是 JVM 的一个替代语言 —替代 是指可以用 Groovy 在 Java 平台上进行 Java 编程,使用方式基本与使用 Java 代码的方式相同. 在编写新应用 ...

  5. python中参数传递的方法

    Python中函数传递参数的形式主要有以下五种,分别为位置传递,关键字传递,默认值传递,不定参数传递(包裹传递)和解包裹传递. 1.位置传递实例: def fun(a,b,c) return a+b+ ...

  6. [SHOI2007]园丁的烦恼

    裸的二维数点 #include"cstdio" #include"cstring" #include"iostream" #include& ...

  7. .net C# Sql数据库SQLHelper类

    using System;using System.Collections.Generic;using System.Text;using System.Collections;using Syste ...

  8. 汇编语言程序环境搭建masm+debug64位 win10/7

    介绍:MASM是Microsoft Macro Assembler 的缩写,是微软公司为x86 微处理器家族开发的汇编开发环境,拥有可视化的开发界面,使开发人员不必再使用DOS环境进行汇编的开发,编译 ...

  9. Java设计模式—状态模式

    状态模式又是一个比较难的设计模式 定义如下: 当一个对象内在状态改变时允许其改变行为,这个对象看起来像改变了其类. 个人理解:通俗的讲,状态模式就是状态的改变引起了行为的改变,但是,我们只能看到行为的 ...

  10. #include <unistd.h> 的作用

    原文:http://blog.csdn.net/ybsun2010/article/details/24832113 由字面意思,unistd.h是unix std的意思,是POSIX标准定义的uni ...