发现好像写了一个洛谷上最快的分块

这道题曾经一度感觉非常不可做,因为\(LCT\)的标签以及没有什么思路的分块

但是自从\(yy\)出来一个错误的哈希冲突分块之后(修改的时候挂掉了),就发现这道题不就是我曾经的那个错误的思路吗

这种要往后不断的跳的题目,我们暴力往后跳的话肯定是会爆炸的,因为这样的复杂度完全取决于询问

于是我们就分块好了,一次跳一个不行,那么我们就一次跳一个块好了

我们设\(b[i]\)表示从\(i\)这个位置开始跳,直到跳出所在块的跳跃次数是多少,\(c[i]\)表示\(i\)这个位置跳出所在块之后在哪一个位置

这个样子的话我们就能做到一次跳一个块了,于是现在询问的复杂度有了保证\

这两个数组显然可以预处理出来,因为\(i\)往后跳一部肯定到达了\(i+a[i]\)这个位置,于是就有\(b[i]=b[i+a[i]]+1\),\(c[i]=c[i+a[i]]\),对于每一个块倒着预处理就好了

之后就是修改,因为这里只有单点修改,于是我们直接拎出那个块来,修改一下,像预处理那样暴力重构整个块就好了

复杂度也是\(O(\sqrt{n})\)

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define re register
#define maxn 200005
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int a[maxn];
int b[maxn],c[maxn];
int l[maxn],r[maxn];
int len,Q,n,tot;
inline void Build_Block()
{
len=std::sqrt(n);
int k=1;
while(k<=n)
{
l[++tot]=k;
r[tot]=min(n,l[tot]+len-1);
k=r[tot]+1;
for(re int i=r[tot];i>=l[tot];--i)
if(i+a[i]>r[tot]) b[i]=1,c[i]=i+a[i];
else b[i]=b[i+a[i]]+1,c[i]=c[i+a[i]];
}
}
inline int find(int x)
{
if(x%len==0) return x/len;
return x/len+1;
}
inline int query(int x)
{
int ans=0;
while(x<=n)
{
ans+=b[x];
x=c[x];
}
return ans;
}
inline void change(int x,int val)
{
int t=find(x);
a[x]=val;
for(re int i=x;i>=l[t];--i)
if(i+a[i]>r[t]) b[i]=1,c[i]=i+a[i];
else b[i]=b[i+a[i]]+1,c[i]=c[i+a[i]];
}
int main()
{
n=read();
for(re int i=1;i<=n;i++)
a[i]=read();
Build_Block();
Q=read();
int opt,x,y;
while(Q--)
{
opt=read(),x=read();
if(opt==1) printf("%d\n",query(x+1));
else y=read(),change(x+1,y);
}
return 0;
}

【[HNOI2010]弹飞绵羊】的更多相关文章

  1. P3203 [HNOI2010]弹飞绵羊(LCT)

    P3203 [HNOI2010]弹飞绵羊 LCT板子 用一个$p[i]$数组维护每个点指向的下个点. 每次修改时cut*1+link*1就解决了 被弹出界时新设一个点,权为0,作为终点表示出界点.其他 ...

  2. [HNOI2010] 弹飞绵羊 (分块)

    [HNOI2010] 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上 ...

  3. 洛谷 P3203 [HNOI2010]弹飞绵羊 解题报告

    P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一 ...

  4. [BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree)

    [BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree) 题面 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一 ...

  5. 「洛谷P3202」[HNOI2010]弹飞绵羊 解题报告

    P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一 ...

  6. [Luogu P3203] [HNOI2010]弹飞绵羊 (LCT维护链的长度)

    题面 传送门:洛谷 Solution 这题其实是有类似模型的. 我们先考虑不修改怎么写.考虑这样做:每个点向它跳到的点连一条边,最后肯定会连成一颗以n+1为根的树(我们拿n+1代表被弹出去了).题目所 ...

  7. P3203 [HNOI2010]弹飞绵羊 —— 懒标记?分块?LCT?...FAQ orz

    好久没写博客了哈,今天来水一篇._(:з」∠)_ 题目 :弹飞绵羊(一道省选题) 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏 ...

  8. P3203 [HNOI2010]弹飞绵羊 —— 懒标记?分块?

    好久没写博客了哈,今天来水一篇._(:з」∠)_ 题目 :弹飞绵羊(一道省选题) 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏 ...

  9. 洛谷P3203 [HNOI2010] 弹飞绵羊 [LCT]

    题目传送门 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...

  10. P3203 [HNOI2010]弹飞绵羊(LCT)

    弹飞绵羊 题目传送门 解题思路 LCT. 将每个节点的权值设为\(1\),连接\(i\)和\(i+ki\),被弹飞就连上\(n\),维护权值和\(sum[]\).从\(j\)弹飞需要的次数就是\(sp ...

随机推荐

  1. 给Solr配置中文分词器

    第一步下载分词器https://pan.baidu.com/s/1X8v65YZ4gIkNQXsXfSULBw 第二歩打开已经解压的ik分词器文件夹 将ik-analyzer-solr5-5.x.ja ...

  2. mac平台安装配置TomCat

    1.下载Tomcat 7.0 地址:http://tomcat.apache.org/download-70.cgi Binary Distributions -> Core 选择zip或tar ...

  3. CSS 基础点

    Part1:font:inherit 字体的设置 设置所有元素的字体保持一致: 所有元素:*{font:inherit;} /* IE8+ */ body体用percent:body{font:100 ...

  4. 撩课-Mysql详解第3部分sql分类

    学习地址:[撩课-JavaWeb系列1之基础语法-前端基础][撩课-JavaWeb系列2之XML][撩课-JavaWeb系列3之MySQL][撩课-JavaWeb系列4之JDBC][撩课-JavaWe ...

  5. 【SSH网上商城项目实战02】基本增删查改、Service和Action的抽取以及使用注解替换xml

    转自:https://blog.csdn.net/eson_15/article/details/51297698 上一节我们搭建好了Struts2.Hibernate和Spring的开发环境,并成功 ...

  6. sql:PostgreSQL9.3 Using RETURNS TABLE vs. OUT parameters

    http://www.postgresonline.com/journal/archives/201-Using-RETURNS-TABLE-vs.-OUT-parameters.html http: ...

  7. 第三天-基本数据类型 int bool str

    # python基础数据类型 # 1. int 整数 # 2.str 字符串.不会用字符串保存大量的数据 # 3.bool 布尔值. True, False # 4.list 列表(重点) 存放大量的 ...

  8. HTTP协议教程

    文章内容: 1.HTTP协议概述 2.URL知识概述 3.HTTP消息结构详解 1.HTTP协议概述 定义: 超文本传送协议 (HTTP-Hypertext transfer protocol) 是分 ...

  9. Keras 自适应Learning Rate (LearningRateScheduler)

    When training deep neural networks, it is often useful to reduce learning rate as the training progr ...

  10. ArcGIS中的坐标系统定义与投影转换

    坐标系统是GIS数据重要的数学基础,用于表示地理要素.图像和观测结果的参照系统,坐标系统的定义能够保证地理数据在软件中正确的显示其位置.方向和距离,缺少坐标系统的GIS数据是不完善的,因此在ArcGI ...