【[HNOI2010]弹飞绵羊】
发现好像写了一个洛谷上最快的分块
这道题曾经一度感觉非常不可做,因为\(LCT\)的标签以及没有什么思路的分块
但是自从\(yy\)出来一个错误的哈希冲突分块之后(修改的时候挂掉了),就发现这道题不就是我曾经的那个错误的思路吗
这种要往后不断的跳的题目,我们暴力往后跳的话肯定是会爆炸的,因为这样的复杂度完全取决于询问
于是我们就分块好了,一次跳一个不行,那么我们就一次跳一个块好了
我们设\(b[i]\)表示从\(i\)这个位置开始跳,直到跳出所在块的跳跃次数是多少,\(c[i]\)表示\(i\)这个位置跳出所在块之后在哪一个位置
这个样子的话我们就能做到一次跳一个块了,于是现在询问的复杂度有了保证\
这两个数组显然可以预处理出来,因为\(i\)往后跳一部肯定到达了\(i+a[i]\)这个位置,于是就有\(b[i]=b[i+a[i]]+1\),\(c[i]=c[i+a[i]]\),对于每一个块倒着预处理就好了
之后就是修改,因为这里只有单点修改,于是我们直接拎出那个块来,修改一下,像预处理那样暴力重构整个块就好了
复杂度也是\(O(\sqrt{n})\)
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define re register
#define maxn 200005
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int a[maxn];
int b[maxn],c[maxn];
int l[maxn],r[maxn];
int len,Q,n,tot;
inline void Build_Block()
{
len=std::sqrt(n);
int k=1;
while(k<=n)
{
l[++tot]=k;
r[tot]=min(n,l[tot]+len-1);
k=r[tot]+1;
for(re int i=r[tot];i>=l[tot];--i)
if(i+a[i]>r[tot]) b[i]=1,c[i]=i+a[i];
else b[i]=b[i+a[i]]+1,c[i]=c[i+a[i]];
}
}
inline int find(int x)
{
if(x%len==0) return x/len;
return x/len+1;
}
inline int query(int x)
{
int ans=0;
while(x<=n)
{
ans+=b[x];
x=c[x];
}
return ans;
}
inline void change(int x,int val)
{
int t=find(x);
a[x]=val;
for(re int i=x;i>=l[t];--i)
if(i+a[i]>r[t]) b[i]=1,c[i]=i+a[i];
else b[i]=b[i+a[i]]+1,c[i]=c[i+a[i]];
}
int main()
{
n=read();
for(re int i=1;i<=n;i++)
a[i]=read();
Build_Block();
Q=read();
int opt,x,y;
while(Q--)
{
opt=read(),x=read();
if(opt==1) printf("%d\n",query(x+1));
else y=read(),change(x+1,y);
}
return 0;
}
【[HNOI2010]弹飞绵羊】的更多相关文章
- P3203 [HNOI2010]弹飞绵羊(LCT)
P3203 [HNOI2010]弹飞绵羊 LCT板子 用一个$p[i]$数组维护每个点指向的下个点. 每次修改时cut*1+link*1就解决了 被弹出界时新设一个点,权为0,作为终点表示出界点.其他 ...
- [HNOI2010] 弹飞绵羊 (分块)
[HNOI2010] 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上 ...
- 洛谷 P3203 [HNOI2010]弹飞绵羊 解题报告
P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一 ...
- [BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree)
[BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree) 题面 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一 ...
- 「洛谷P3202」[HNOI2010]弹飞绵羊 解题报告
P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一 ...
- [Luogu P3203] [HNOI2010]弹飞绵羊 (LCT维护链的长度)
题面 传送门:洛谷 Solution 这题其实是有类似模型的. 我们先考虑不修改怎么写.考虑这样做:每个点向它跳到的点连一条边,最后肯定会连成一颗以n+1为根的树(我们拿n+1代表被弹出去了).题目所 ...
- P3203 [HNOI2010]弹飞绵羊 —— 懒标记?分块?LCT?...FAQ orz
好久没写博客了哈,今天来水一篇._(:з」∠)_ 题目 :弹飞绵羊(一道省选题) 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏 ...
- P3203 [HNOI2010]弹飞绵羊 —— 懒标记?分块?
好久没写博客了哈,今天来水一篇._(:з」∠)_ 题目 :弹飞绵羊(一道省选题) 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏 ...
- 洛谷P3203 [HNOI2010] 弹飞绵羊 [LCT]
题目传送门 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...
- P3203 [HNOI2010]弹飞绵羊(LCT)
弹飞绵羊 题目传送门 解题思路 LCT. 将每个节点的权值设为\(1\),连接\(i\)和\(i+ki\),被弹飞就连上\(n\),维护权值和\(sum[]\).从\(j\)弹飞需要的次数就是\(sp ...
随机推荐
- 【转】前端——实用UI组件库
Angular UI 组件 ngx-bootstrap 是一套Bootstrap 组件 官网:https://valor-software.com/ngx-bootstrap/#/ github: h ...
- 【原】jQuery easyUI 快速搭建前端框架
jQueryEasyUI jQuery EasyUI是一组基于jQuery的UI插件集合体,而jQuery EasyUI的目标就是帮助web开发者更轻松的打造出功能丰富并且美观的UI界面.开发者不需要 ...
- PictureBox控件
PictureBox控件可以显示来自位图.图标或者元文件,以及来自增强的元文件.JPEG.GIF文件的图形,如果控件不足以显示整幅图像,则裁剪图像以适应控件的大小. Sizemode 图片的大小方式 ...
- Form身份验证
Forms身份验证Web.config<system.web><authentication mode="Forms"> <fo ...
- ios开发 学习积累20161024~20161026
打算转ios开发工程师的岗位 今天看了下视频,自己吭呲吭呲几下开始写UI 先把Xcode8 的界面总结下 navigator ['nævɪɡetɚ] 导航器.浏览器 symbol navigator ...
- Spring扩展:Spring的IoC容器(注入对象的方式和编码方式)
二.Spring的IoC容器 IoC:Inversion of Control(控制反转) DI:Dependency Injection(依赖注入) 三.依赖注入的方式 (1)构造注入 (2)set ...
- 961 -尺寸2N阵列中的N重复元素
在一个A大小的数组中2N,有N+1独特的元素,这些元素中的一个重复N次. 返回重复N次的元素. 例1: 输入:[1,2,3,3] 输出:3 例2: 输入:[2,1,2,5,3,2] 输出:2 例3: ...
- sql中,In和where的区别
SQL 语句中In 和 Where 的含义不同.应用解释如下: 1.如需有条件地从表中选取.删除.更新数据时,使用Where:2.In只作为Where条件子句下的一个运算符,除了In之外还有Betwe ...
- sql: Oracle 11g create procedure
CREATE OR REPLACE PROCEDURE proc_Insert_BookKindList ( temTypeName nvarchar2, temParent int ) AS nco ...
- JS求一个数组元素的最小公倍数
求几个数的最小公倍数就是先求出前两个数的最小公倍数,然后再把这个最小公倍数跟第三个数放在一起来求最小公倍数,如此类推... var dbList = []; //两个数的最小公倍数 function ...