用Keras定义网络模型有两种方式,

之前我们介绍了Sequential顺序模型,今天我们来接触一下 Keras 的函数式API模型

函数式API:全连接网络

from keras.layers import Input, Dense
from keras.models import Model # 这部分返回一个张量
inputs = Input(shape=(784,)) # 层的实例是可调用的,它以张量为参数,并且返回一个张量
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x) # 这部分创建了一个包含输入层和三个全连接层的模型
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(data, labels,batch_size=32, epochs=5) # 开始训练

多输入多输出模型

主要负责用函数式API来实现它

主要输入接收新闻标题本身,即一个整数序列(每个证书编码一个词),这些整数在1到10000之间(10000个词的词汇表),且序列长度为100个词

from keras.layers import Input, Embedding, LSTM, Dense
from keras.models import Model # 标题输入:接收一个含有 100 个整数的序列,每个整数在 1 到 10000 之间。
# 注意我们可以通过传递一个 "name" 参数来命名任何层。
main_input = Input(shape=(100,), dtype='int32', name='main_input') # Embedding 层将输入序列编码为一个稠密向量的序列,
# 每个向量维度为 512。
x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input) # LSTM 层把向量序列转换成单个向量,
# 它包含整个序列的上下文信息
lstm_out = LSTM(32)(x)

在这里,我们插入辅助损失,即使在模型主损失很高的情况下,LSTM层和Embedding层都能被平稳地训练。

auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out)

此时,我们将辅助输入数据与 LSTM 层的输出连接起来,输入到模型中:

auxiliary_input = Input(shape=(5,), name='aux_input')
x = keras.layers.concatenate([lstm_out, auxiliary_input]) # 堆叠多个全连接网络层
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x) # 最后添加主要的逻辑回归层
main_output = Dense(1, activation='sigmoid', name='main_output')(x)

然后定义一个具有两个输入和两个输出的模型:

model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output])

现在编译模型,并给辅助损失分配一个 0.2 的权重。如果要为不同的输出指定不同的 loss_weights 或 loss,可以使用列表或字典。 在这里,我们给 loss 参数传递单个损失函数,这个损失将用于所有的输出。

model.compile(optimizer='rmsprop', loss='binary_crossentropy',
loss_weights=[1., 0.2])

我们可以通过输入数组和目标数组列表来训练模型:

model.fit([headline_data, additional_data], [labels, labels],
epochs=50, batch_size=32)

由于输入和输出均被命名了(在定义时传递了一个 name 参数),我们也可以通过以下方式编译模型:

model.compile(optimizer='rmsprop',
loss={'main_output': 'binary_crossentropy', 'aux_output': 'binary_crossentropy'},
loss_weights={'main_output': 1., 'aux_output': 0.2}) # 然后使用以下方式训练:
model.fit({'main_input': headline_data, 'aux_input': additional_data},
{'main_output': labels, 'aux_output': labels},
epochs=50, batch_size=32)

共享网络层

函数API的另一个用途是使用共享网络层的模型。

比如我们想建立一个模型来分辨两条推文是否来自同一个人,实现这个目标的方法是:将两条推文编码层两个向量,连接向量,然后添加逻辑回归层;这将输出推文来自通一个作者的概率。模型将接受一对对正负表示的推特数据。

太难了,我理解不了。以后这条博客慢慢更新。

Keras函数式 API的更多相关文章

  1. keras函数式编程(多任务学习,共享网络层)

    https://keras.io/zh/ https://keras.io/zh/getting-started/functional-api-guide/ https://github.com/ke ...

  2. 手写数字识别——利用keras高层API快速搭建并优化网络模型

    在<手写数字识别——手动搭建全连接层>一文中,我们通过机器学习的基本公式构建出了一个网络模型,其实现过程毫无疑问是过于复杂了——不得不考虑诸如数据类型匹配.梯度计算.准确度的统计等问题,但 ...

  3. 【小白学PyTorch】21 Keras的API详解(下)池化、Normalization层

    文章来自微信公众号:[机器学习炼丹术].作者WX:cyx645016617. 参考目录: 目录 1 池化层 1.1 最大池化层 1.2 平均池化层 1.3 全局最大池化层 1.4 全局平均池化层 2 ...

  4. TensorFlow 1.4利用Keras+Estimator API进行训练和预测

    Tensorflow 1.4中,Keras作为作为核心模块可以直接通过tf.keas进行调用,但是考虑到keras对tfrecords文件进行操作比较麻烦,而将keras模型转成tensorflow中 ...

  5. 【小白学PyTorch】21 Keras的API详解(上)卷积、激活、初始化、正则

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑答疑解惑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx6450 ...

  6. 小白如何学习PyTorch】25 Keras的API详解(下)缓存激活,内存输出,并发解决

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑答疑解惑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx6450 ...

  7. Keras高层API之Metrics

    在tf.keras中,metrics其实就是起到了一个测量表的作用,即测量损失或者模型精度的变化.metrics的使用分为以下四步: step1:Build a meter acc_meter = m ...

  8. 深度学习框架: Keras官方中文版文档正式发布

    今年 1 月 12 日,Keras 作者 François Chollet‏ 在推特上表示因为中文读者的广泛关注,他已经在 GitHub 上展开了一个 Keras 中文文档项目.而昨日,Françoi ...

  9. 3.keras实现-->高级的深度学习最佳实践

    一.不用Sequential模型的解决方案:keras函数式API 1.多输入模型 简单的问答模型 输入:问题 + 文本片段 输出:回答(一个词) from keras.models import M ...

随机推荐

  1. Java中的组合与聚合

    组合和聚合是有很大区别的,这个区别不是在形式上,而是在本质上:比如A类中包含B类的一个引用b,当A类的一个对象消亡时,b这个引用所指向的对象也同时消亡(没有任何一个引用指向它,成了垃圾对象),这种情况 ...

  2. JAVA异常处理分析高级进界(下)

    既然Throwable是异常处理机制的核心,那么,我们就来分析下它的源码来看看它是如何实现的. 进行分析前,我们可以先想想如果让我们实现一个异常处理机制,我们需要它做什么? 1. 发生异常终止程序执行 ...

  3. 微信小程序-TabBar功能实现

    要实现tabbar的导航条其实很简单,我们要实现全局的tabbar只需要在app.json文件中定义即可,局部的就在局部的tabbar文件中实现. 来看看app.json代码: { "pag ...

  4. myeclipse6.5使用tomcat7报java.lang.NoClassDefFoundError: org/apache/juli/logging/LogFactory错

    Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/juli/logging/LogFact ...

  5. VM虚拟机上在NAT模式下设置静态IP的做法

    1.问题:由于业务需要,个人笔记本电脑上用Vmware安装了3台Ubuntu虚拟机,现要求pc机连入局域网后,四台机器(3台ubuntu虚拟机+1台宿主机)能上网,并且,虚拟机要使用某一网段的固定IP ...

  6. hdu 3689 杭州 10 现场 J - Infinite monkey theorem 概率dp kmp 难度:1

    J - Infinite monkey theorem Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &am ...

  7. .ashx接口单元测试

    最近项目中需要修改一个文件上传的.ashx处理,代码的大概形式是这样的: public void ProcessRequest(HttpContext context) { CallA(context ...

  8. Alpha阶段第1周 Scrum立会报告+燃尽图 07

    作业要求与https://edu.cnblogs.com/campus/nenu/2018fall/homework/2246相同 一.小组介绍 组长:刘莹莹 组员:朱珅莹 孙韦男 祝玮琦 王玉潘 周 ...

  9. .net 应用程序 发布上线注意事项

    生产环境发布时,对应的程序目录必须新建当日rar压缩包进行备份生产环境数据库发布时,必须创建存储过程的副本sql用于回滚,操作方式:F7调出对象资源管理器详细信息->选中所有存储过程->编 ...

  10. SqlServer缓存依赖 示例

    ------------------------------------------------------------c#代码----------------------using System; ...