描述:

有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下:

1)先手不能在第一次把所有的石子取完,至少取1颗;

2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的2倍;

3)取走最后一个石子的人为赢家。

结论:

如果n为斐波那契数(2,3,5,8,13,21,34,55,89...),则先手必败。

证明一:

如果按原来的套路:

由于局面不仅跟当前剩余数有关,还与上次取的数有关,所以状态中需要考虑能取的数(变得没那么直观)。

必败态:当剩余数为斐波那契数,且不能一次取完时;

    当剩余数不是斐波那契数,但其按Zeckendorf定理分解后,不能一次取完其中最小分解数时。

必胜态:当剩余数不是斐波那契数,且其按Zeckendorf定理分解后,能一次取完其中最小分解数时;

    当能一次取完时剩余数时;

只需证明:

1.必败态任一操作都将转为必胜态;

2.必胜态存在一操作转为必败态;

行但是麻烦,仅与当前局面有关的游戏,用这种分析才方便。

证明二:

当开始是斐波那契数时,用数学归纳法证明必败:

当n=2时,必败;

设当n<=f(k)时,必败;

则当n=f(k + 1)时,有f(k + 1) = f(k) + f(k - 1):

  如果取走数量大于等于f(k -1),则后手可以一次取完,由于f(k) < 2(k - 1)。

  则先手不能一次取完f(k - 1)。根据归纳法的假设,对于f(k - 1),后手必能取得f(k - 1)最后一颗。

此时,还需要证明,先手不能一次取完剩下的f(k):

  易得,先手取的石子数x = f(k - 1) / 3时,后手则取2 * f(k - 1) / 3,为最大。

  (由于后手取石子的最大值函数为max(2x, f(k - 1) - x),两者相等时最大,即x = f(k - 1) / 3)

  此时,先手能取得最大值为2 * (2 * f(k - 1) / 3),即4f(k - 1) / 3,与f(k)相比,做差可知后者大,即一次不能取完,由于假设先手必败。

证毕。

当开始不是斐波那契数列时:

由“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。

则数n可以分解为n1 + n2 + ... + nx,(1...x是下标)每个都是斐波那契数,且没有两个是连续的;

此时,只要取走最小的那个即可。由于n(x - 1)和nx不连续,则易得n(x - 1) > 2nx,即取走最小那个数后,后手不能取完第二小的数。

此时,问题分解为多个小的斐波那契数,且必败态都是对方。

ICG游戏:斐波那契博弈的更多相关文章

  1. {HDU}{2516}{取石子游戏}{斐波那契博弈}

    题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家. 思路:斐波那契博弈,这个题的证明过程太精彩了! 一个重要的定理:任何正整数都可以表示为若干个不连续的斐 ...

  2. HDU 2516 取石子游戏 斐波纳契博弈

    斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍) ...

  3. HDU 2516 取石子游戏(斐波那契博弈)

    取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...

  4. 51Nod 1070:Bash游戏 V4(斐波那契博弈)

    1070 Bash游戏 V4  基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次拿的数量最少1个 ...

  5. HDU.2516 取石子游戏 (博弈论 斐波那契博弈)

    HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...

  6. 51Nod 1070 Bash游戏 V4(斐波那契博弈)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1070 题意: 思路: 这个是斐波那契博弈,http://blog.csd ...

  7. 题解报告:hdu 2516 取石子游戏(斐波那契博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个, ...

  8. 51nod Bash游戏(V1,V2,V3,V4(斐波那契博弈))

    Bash游戏V1 有一堆石子共同拥有N个. A B两个人轮流拿.A先拿.每次最少拿1颗.最多拿K颗.拿到最后1颗石子的人获胜.如果A B都很聪明,拿石子的过程中不会出现失误.给出N和K,问最后谁能赢得 ...

  9. hdu 2516 取石子游戏 (斐波那契博弈)

    题意:1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍. 取完者胜,先取者负输出"Second win",先取者胜 ...

  10. 取石子游戏 HDU2516(斐波那契博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 题目: Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任 ...

随机推荐

  1. L187 DKK2

    Why can millions of hairs grow from our heads, and yet our palms手掌 and the soles of our feet are as ...

  2. CSS布局相关概要

    一.文档流 运用css布局首先要具备一些概念上的知识,文档流的概念充斥着布局的整个过程.浏览器渲染页面是有先后顺序的,其顺序是至上而下,根据HTML的文档结构进行渲染. 二.div+css 耳熟能详的 ...

  3. MacBook下java环境的搭建

    在Mac下搭建JAVA环境: 1.下载并安装JDK: 下载最新的JDK,傻瓜式安装,一直下一步就OK了. 2.配置环境变量: 在终端中输入 sudo vim ~/.bash_profile ,打开 . ...

  4. java编程排序之自定义类型的集合,按业务需求排序

    自定义引用类型放入集合中,按实际业务需求进行排序的两种思路 第一种思路: (1)自定义实体类实现java.lang.Comparable接口,重写public int compareTo(Object ...

  5. postgres 使用存储过程批量插入数据

    參考资料(pl/pgsql 官方文档): http://www.postgresql.org/docs/9.3/static/plpgsql.html create or replace functi ...

  6. hdu1066

    求N!的非零末尾位(吉大ACM模板) #include <stdio.h> #include <string.h> #define MAXN 10000 int lastdig ...

  7. FastAdmin bootstrap-table 分页手动输入跳转

    FastAdmin bootstrap-table 分页手动输入跳转 Bootstrap-Table (V1.11.0)默认是没有这个功能的,不过作者有写的扩展. https://github.com ...

  8. Tcl 和 Raft 发明人的软件设计哲学

    John Ousterhout(斯坦福大学教授,Tcl 语言.Raft 协议的发明人...真的是超级牛人,Title 好多好多,这里就列几个大家熟悉的),在 Google 做了一次演讲,题目就叫 「A ...

  9. 'scalar deleting destructor' 和 'vector deleting destructor'的区别

    在用到delete的时候,我们往往会针对类对象与类对象数组做不同删除,在这背后编译器是如何做的? #include<iostream> using namespace std; class ...

  10. 工欲善其事必先利其器系列之:更换Visual Studio主题.

    前言:如果你厌烦的vs2010的蓝色风格主题,可以使用Visual Studio Color Theme Editor这款插件来改变主题风格,不过我还是喜欢METRO风格. 效果图预览: Windwo ...