题意是描述是这样的,给你n个围栏,对于每个围栏你必须走到其边上才可以往下跳,现在问你从初始最高位置的n个围栏,到原点,水平走过的路程最少是多少?

其实我可可以这样来考虑问题。由于每次都是从板子的左右两端往下面跳,我们可以从1到n有序的加入每一块板子(相当于对区间染色),加入每块板子查询一下它的两端的下面的点是什么。有了这个操作我们就可以直接预处理出来从每一块板子左右两端跳下来会落在那一块板子上面。

那应该用什么办法来实现这个查询和更新呢?显然,线段树。

下面我们等于是分别从第n块板子的左右端点往下走,然后求到原点的水平最短路了,直接一遍SPFA搞定。

上代码吧,下面省略若干个字。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#define maxn 200100
using namespace std; const int add=;
int n,S,ans;
int l[maxn],r[maxn],fl[maxn],fr[maxn],pl[maxn],pr[maxn];
int a[*maxn],col[*maxn];
bool inq[maxn]; int abs(int x)
{
return x>=?x:-x;
} void PushDown(int rt)
{
if (col[rt]==-) return;
col[rt<<]=col[rt<<|]=col[rt];
col[rt]=-;
} void update(int rt,int l,int r,int L,int R,int id)
{
if (L<=l && R>=r)
{
col[rt]=id;
return;
}
PushDown(rt);
int mid=(l+r)>>;
if (L<=mid) update(rt<<,l,mid,L,R,id);
if (R> mid) update(rt<<|,mid+,r,L,R,id);
} int query(int rt,int l,int r,int pos)
{
if (l<=pos && r>=pos && col[rt]>=) return col[rt];
PushDown(rt);
int mid=(l+r)>>;
if (pos<=mid) return query(rt<<,l,mid,pos);
else return query(rt<<|,mid+,r,pos);
} void bfs()
{
fl[n]=S-l[n],fr[n]=r[n]-S;
queue<int> Q;
Q.push(n);
while (!Q.empty())
{
int cur=Q.front();
Q.pop(),inq[cur]=false;
int next1=pl[cur],next2=pr[cur]; if (next1==) ans=min(ans,fl[cur]+abs(add-l[cur]));
else
{
if (fl[cur]+l[cur]-l[next1]<fl[next1] || fl[cur]+r[next1]-l[cur]<fr[next1])
{
fl[next1]=min(fl[next1],fl[cur]+l[cur]-l[next1]);
fr[next1]=min(fr[next1],fl[cur]+r[next1]-l[cur]);
if (!inq[next1]) Q.push(next1),inq[next1]=true;
}
} if (next2==) ans=min(ans,fr[cur]+abs(add-r[cur]));
else
{
if (fr[cur]+r[cur]-l[next2]<fl[next2] || fr[cur]+r[next2]-r[cur]<fr[next2])
{
fl[next2]=min(fl[next2],fr[cur]+r[cur]-l[next2]);
fr[next2]=min(fr[next2],fr[cur]+r[next2]-r[cur]);
if (!inq[next2]) Q.push(next2),inq[next2]=true;
}
}
}
} int main()
{
//while (scanf("%d%d",&n,&S)!=EOF)
{
scanf("%d%d",&n,&S);
S+=add;
memset(fl,0x3f,sizeof fl);
memset(fr,0x3f,sizeof fr);
for (int i=; i<=n; i++)
{
scanf("%d%d",&l[i],&r[i]);
l[i]+=add,r[i]+=add;
pl[i]=query(,,maxn,l[i]);
pr[i]=query(,,maxn,r[i]);
update(,,maxn,l[i],r[i],i);
}
ans=~0U>>;
bfs();
printf("%d\n",ans);
}
return ;
}

POJ2374_Fence Obstacle Course的更多相关文章

  1. hdu 3152 Obstacle Course

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3152 Obstacle Course Description You are working on t ...

  2. [转] The Single Biggest Obstacle to Trading Success

    Why do some people succeed spectacularly in the market while others fail? The market is the same for ...

  3. BZOJ 1644: [Usaco2007 Oct]Obstacle Course 障碍训练课( BFS )

    BFS... 我连水题都不会写了QAQ ------------------------------------------------------------------------- #inclu ...

  4. BZOJ 1644: [Usaco2007 Oct]Obstacle Course 障碍训练课

    题目 1644: [Usaco2007 Oct]Obstacle Course 障碍训练课 Time Limit: 5 Sec  Memory Limit: 64 MB Description 考虑一 ...

  5. 碰撞回避算法(一) Velocity Obstacle

    碰撞回避是机器人导航,游戏AI等领域的基础课题.几十年来,有很多算法被提出.注意这里主要指的是局部的碰撞回避算法.尽管和全局的路径规划算法(A*算法等)有千丝万缕的联系.可是还是有所不同的(局部的碰撞 ...

  6. 1644: [Usaco2007 Oct]Obstacle Course 障碍训练课

    1644: [Usaco2007 Oct]Obstacle Course 障碍训练课 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 383  Solved ...

  7. 障碍路线Obstacle Course

    P1649 [USACO07OCT]障碍路线Obstacle Course 裸的dfs,今天学了一个新招,就是在过程中进行最优性减枝. #include<bits/stdc++.h> us ...

  8. Velocity Obstacle

    [Velocity Obstacle] Two circular objects A,B, at time t(0), with velocity V(A),V(B). A represent the ...

  9. bzoj1644 / P1649 [USACO07OCT]障碍路线Obstacle Course

    P1649 [USACO07OCT]障碍路线Obstacle Course bfs 直接上个bfs 注意luogu的题目和bzoj有不同(bzoj保证有解,还有输入格式不同). #include< ...

随机推荐

  1. 2017-2018-1 20155329《信息安全技术》实验二——Windows口令破解

    2017-2018-1 20155329<信息安全技术>实验二--Windows口令破解 实验原理 口令破解方法 字典破解: 指通过破解者对管理员的了解,猜测其可能使用某些信息作为密码,利 ...

  2. win32api 找不到指定的模块

    pywin32 安装后 import win32api 出现ImportError: DLL load failed: 找不到指定的模块 解决方法: 拷贝 C:\Python26\Lib\site-p ...

  3. 请求头(request headers)和响应头(response headers)解析

    *****************请求头(request headers)***************** POST /user/signin HTTP/1.1    --请求方式 文件名 http ...

  4. RHSCA模拟考试

    开始考试:桌面是个黑框子 点击reboot按钮,破解密码 开机成功,输入startx进入图形界面 不能复制,要在物理机用ssh root@172.25.0.11 远程连接,就可以复制粘贴了 * Hos ...

  5. 【LOJ6433】【PKUSC2018】最大前缀和

    [LOJ6433][PKUSC2018]最大前缀和 题面 题目描述 小 C 是一个算法竞赛爱好者,有一天小 C 遇到了一个非常难的问题:求一个序列的最大子段和. 但是小 C 并不会做这个题,于是小 C ...

  6. Mysql:查询当天、今天、本周、上周、本月、上月、本季度、本年的数据

    1. 今天 select * from 表名 WHERE TO_DAYS(时间字段名) = TO_DAYS(NOW()); 2. 昨天 3. 本周 SELECT * FROM 表名 WHERE YEA ...

  7. C#实现仪器的自动化控制

    1.概述 生产测试当中,测试仪器不可或缺,如果是小规模生产,手动测试可以对付:但是要想到达大批量生产的目的,为了简化测试,节约时间,就需要进行自动化测试.出于这样的需求,对仪器的自动化程控就有了需求. ...

  8. c# 实体类怎么给LIST赋值,table转LIST

    /// <summary> /// 缓存客服集合信息 /// </summary> public class model { /// <summary> /// 客 ...

  9. Java EE平台介绍(译)

    Java EE平台介绍 2.1 企业应用总览 这一部分将对企业应用及其设计和开发进行简单介绍. 就像之前说的,Java EE 平台是为了帮助开发者开发大规模.多层次.可伸缩.服务可靠.网络安全的应用而 ...

  10. spring-boot 项目整合logback

    使用spring-boot项目中添加日志输出,java的日志输出一共有两个大的方案log4j/log4j2 ,logback.log4j2算是对log4j的一个升级版本. 常规做法是引入slf4j作为 ...