CF697D-Puzzles
题目
一棵树,从根节点开始dfs,每层以随机顺序进入每个子节点,问走到每个点的时候期望经过了多少个点。
(这里经过多少个点指的是经过多少个不同的点,即经过一个点多次算一个)
(其实这个题不如说求期望dfn序)。
\(n\le 10^5\)。
分析
一个很明显的思路就是:\(f[x]=1+f[fa]+绕来绕去期望经过的点个数\) 。从上往下dfs,问题就转化成了如何求每一个点\(x\)进入其子节点\(v\)之前期望经过的点个数。设绕来
绕去期望经过点个数为\(g[x]\) ,它的父亲有\(n\)个子节点。
计算这个东西有两种思路:
思路1
注意到这是一个dfs,所以我们如果进了一颗子树,那么它会走完整个子树再出来,而这个子树之前是没有走过的,即点数增加了\(\text{size}[v]\) 。(\(v\)为与\(x\)同父亲的点)
这样我们就可以通过枚举之前走进了多少个子树来求:
g[x]&=\sum _{i=1}^{n-1} 任意不含x的i个的size的和*\frac{1}{n}*\frac{1}{n-1}*\cdots*\frac{1}{n-i} \\
&=\sum _{i=1}^{n-1} \frac{(n-i-1)!}{n!}\sum _{v\ne x}i*size[v]* A_{n-2}^{i-1} \\
&=\sum _{i=1}^{n-1} \frac{(n-i-1)!}{n!}\sum _{v\ne x}i*size[v]* \frac{(n-2)!}{(n-i-1)!} \\
&=\sum _{v\ne x}size[v] \sum _{i=1}^{n-1}\frac{(n-2)!}{n!} \\
&=\frac{1}{2}\sum _{v\ne x}size[v]
\end{aligned}
\]
思路2
把从\(x\)父亲进入这一层的顺序列出来,所有情况是它的全排列。\(x\)前面有\(i\)个数的概率为\(\frac{1}{n}\), 前面\(i\)个数的和的期望为\(\frac{i\sum _{v\ne x}size[v]}{n-1}\),所以所有情况为
g[x]&=\frac{1}{n}*\frac{\sum _{i=1}^{n-1}i\sum _{v\ne x}size[v]}{n-1} \\
&=\frac{1}{2}\sum _{v\ne x}size[v]
\end{aligned}
\]
代码
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
int read() {
int x=0,f=1;
char c=getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=1e5+1;
vector<int> g[maxn];
double f[maxn];
int size[maxn];
inline void add(int x,int y) {g[x].push_back(y);}
int Size(int x) {
int &sz=size[x]=1;
for (int v:g[x]) sz+=Size(v);
return sz;
}
void dfs(int x) {
for (int v:g[x]) f[v]=1.0+f[x]+(double)(size[x]-size[v]-1)/2.0,dfs(v);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
int n=read();
for (int i=2;i<=n;++i) add(read(),i);
f[1]=1;
Size(1);
dfs(1);
for (int i=1;i<=n;++i) printf("%.2lf%c",f[i]," \n"[i==n]);
return 0;
}
CF697D-Puzzles的更多相关文章
- [CF697D]Puzzles 树形dp/期望dp
Problem Puzzles 题目大意 给一棵树,dfs时随机等概率选择走子树,求期望时间戳. Solution 一个非常简单的树形dp?期望dp.推导出来转移式就非常简单了. 在经过分析以后,我们 ...
- [CF161D]Distance in Tree-树状dp
Problem Distance in tree 题目大意 给出一棵树,求这棵树上有多少个最短距离为k的点对. Solution 这个题目可以用点分治来做,然而我到现在还是没有学会点分治,所以只好用树 ...
- codeforces A. Puzzles 解题报告
题目链接:http://codeforces.com/problemset/problem/337/A 题意:有n个学生,m块puzzles,选出n块puzzles,但是需要满足这n块puzzles里 ...
- What are the 10 algorithms one must know in order to solve most algorithm challenges/puzzles?
QUESTION : What are the 10 algorithms one must know in order to solve most algorithm challenges/puzz ...
- C puzzles详解
题目:http://www.gowrikumar.com/c/ 参考:http://wangcong.org/blog/archives/291 http://www.cppblog.com/smag ...
- codeforces 377A. Puzzles 水题
A. Puzzles Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/problem/33 ...
- 【 POJ - 1204 Word Puzzles】(Trie+爆搜|AC自动机)
Word Puzzles Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 10782 Accepted: 4076 Special ...
- 《algorithm puzzles》——谜题
这篇文章开始正式<algorithm puzzles>一书中的解谜之旅了! 狼羊菜过河: 谜题:一个人在河边,带着一匹狼.一只羊.一颗卷心菜.他需要用船将这三样东西运至对岸,然而,这艘船空 ...
- 《algorithm puzzles》——概述
这个专题我们开始对<algorithm puzzles>一书的学习,这本书是一本谜题集,包括一些数学与计算机起源性的古典命题和一些比较新颖的谜题,序章的几句话非常好,在这里做简单的摘录. ...
- Puzzles
Puzzles Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1 thr ...
随机推荐
- Ubuntu + apache + Mysql +php
发生了乱码问题: 打开apache配置文件: sudo gedit /etc/apache2/apache2.conf,在最后面加上:AddDefaultCharset UTF-8,如果还乱码,再将U ...
- oracle基础命令
oracle使用步骤: 一.oracle安装 两个文件解压到同一文件夹,doc为说明/使用文档 二.oracle启动: 1.启动oracle:启动监听和自定义库 2.启动cmd->sqlplus ...
- c++ 创建单项链表
建立单向链表 头指针Head 插入结点 //建立头结点 Head Head=p= malloc(sizeof( struct stu_data)); // memset(stu,,sizeof( st ...
- Mac下 Windows 7 虚拟机成功搭建SVN服务器后如何与Xcode建立联系,并上传原始工程的详细步骤
内容中包含 base64string 图片造成字符过多,拒绝显示
- bilibili携手WeTest,保障视频类应用优质适配体验
WeTest 导读 中国移动视频用户规模越来越大,各类移动视频APP也百家争鸣, B站作为国内知名的年轻人文化社区,bilibili在推出移动端时,除了坚持自身的独特定位以外,对其APP的质量也十分重 ...
- leetcode- 将有序数组转换为二叉搜索树(java)
将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组: [-10,-3,0, ...
- mongodb4简明笔记
就一数据库,掌握基本用法,其他的现学现卖就行了. 所以要把握基本套路. 创建数据库=>使用数据库=>创建集合=>使用集合=>创建文档=>使用文档 1.数据库 mongod ...
- gets函数的完美替代
众所周知 在C语言中scanf用来读取一行字符串时遇到空格或回车会停止 而若要读入一行带空格的字符串时 有些人会用gets来代替 然而,gets的最大问题在于:会读取超过数组长度上限个字符,而超出长度 ...
- STC 单片机ADC实现原理
模数转换器原理 数模转换器( analog to digitI converter,ADC),简称为A/D,ADC是链接模拟世界和数字世界的桥梁.它用于将连续的模拟信号转换为数字形式离散信号.典型的, ...
- 1.hive介绍及安装配置
1.Hive介绍 数据库OLTP 在线事务处理 数据仓库OLAP 在线分析处理 延迟高 类sql方式(HQL) 使用sql方式,用来读写,管理位于分布式存储系统上的大型数据集的数据仓库技术 hive是 ...