题目

一棵树,从根节点开始dfs,每层以随机顺序进入每个子节点,问走到每个点的时候期望经过了多少个点。

(这里经过多少个点指的是经过多少个不同的点,即经过一个点多次算一个)

(其实这个题不如说求期望dfn序)。

\(n\le 10^5\)。

分析

一个很明显的思路就是:\(f[x]=1+f[fa]+绕来绕去期望经过的点个数\) 。从上往下dfs,问题就转化成了如何求每一个点\(x\)进入其子节点\(v\)之前期望经过的点个数。设绕来

绕去期望经过点个数为\(g[x]\) ,它的父亲有\(n\)个子节点。

计算这个东西有两种思路:

思路1

注意到这是一个dfs,所以我们如果进了一颗子树,那么它会走完整个子树再出来,而这个子树之前是没有走过的,即点数增加了\(\text{size}[v]\) 。(\(v\)为与\(x\)同父亲的点)

这样我们就可以通过枚举之前走进了多少个子树来求:

\[\begin{aligned}
g[x]&=\sum _{i=1}^{n-1} 任意不含x的i个的size的和*\frac{1}{n}*\frac{1}{n-1}*\cdots*\frac{1}{n-i} \\
&=\sum _{i=1}^{n-1} \frac{(n-i-1)!}{n!}\sum _{v\ne x}i*size[v]* A_{n-2}^{i-1} \\
&=\sum _{i=1}^{n-1} \frac{(n-i-1)!}{n!}\sum _{v\ne x}i*size[v]* \frac{(n-2)!}{(n-i-1)!} \\
&=\sum _{v\ne x}size[v] \sum _{i=1}^{n-1}\frac{(n-2)!}{n!} \\
&=\frac{1}{2}\sum _{v\ne x}size[v]
\end{aligned}
\]

思路2

把从\(x\)父亲进入这一层的顺序列出来,所有情况是它的全排列。\(x\)前面有\(i\)个数的概率为\(\frac{1}{n}\), 前面\(i\)个数的和的期望为\(\frac{i\sum _{v\ne x}size[v]}{n-1}\),所以所有情况为

\[\begin{aligned}
g[x]&=\frac{1}{n}*\frac{\sum _{i=1}^{n-1}i\sum _{v\ne x}size[v]}{n-1} \\
&=\frac{1}{2}\sum _{v\ne x}size[v]
\end{aligned}
\]

代码

#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
int read() {
int x=0,f=1;
char c=getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=1e5+1;
vector<int> g[maxn];
double f[maxn];
int size[maxn];
inline void add(int x,int y) {g[x].push_back(y);}
int Size(int x) {
int &sz=size[x]=1;
for (int v:g[x]) sz+=Size(v);
return sz;
}
void dfs(int x) {
for (int v:g[x]) f[v]=1.0+f[x]+(double)(size[x]-size[v]-1)/2.0,dfs(v);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
int n=read();
for (int i=2;i<=n;++i) add(read(),i);
f[1]=1;
Size(1);
dfs(1);
for (int i=1;i<=n;++i) printf("%.2lf%c",f[i]," \n"[i==n]);
return 0;
}

CF697D-Puzzles的更多相关文章

  1. [CF697D]Puzzles 树形dp/期望dp

    Problem Puzzles 题目大意 给一棵树,dfs时随机等概率选择走子树,求期望时间戳. Solution 一个非常简单的树形dp?期望dp.推导出来转移式就非常简单了. 在经过分析以后,我们 ...

  2. [CF161D]Distance in Tree-树状dp

    Problem Distance in tree 题目大意 给出一棵树,求这棵树上有多少个最短距离为k的点对. Solution 这个题目可以用点分治来做,然而我到现在还是没有学会点分治,所以只好用树 ...

  3. codeforces A. Puzzles 解题报告

    题目链接:http://codeforces.com/problemset/problem/337/A 题意:有n个学生,m块puzzles,选出n块puzzles,但是需要满足这n块puzzles里 ...

  4. What are the 10 algorithms one must know in order to solve most algorithm challenges/puzzles?

    QUESTION : What are the 10 algorithms one must know in order to solve most algorithm challenges/puzz ...

  5. C puzzles详解

    题目:http://www.gowrikumar.com/c/ 参考:http://wangcong.org/blog/archives/291 http://www.cppblog.com/smag ...

  6. codeforces 377A. Puzzles 水题

    A. Puzzles Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/problem/33 ...

  7. 【 POJ - 1204 Word Puzzles】(Trie+爆搜|AC自动机)

    Word Puzzles Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 10782 Accepted: 4076 Special ...

  8. 《algorithm puzzles》——谜题

    这篇文章开始正式<algorithm puzzles>一书中的解谜之旅了! 狼羊菜过河: 谜题:一个人在河边,带着一匹狼.一只羊.一颗卷心菜.他需要用船将这三样东西运至对岸,然而,这艘船空 ...

  9. 《algorithm puzzles》——概述

    这个专题我们开始对<algorithm puzzles>一书的学习,这本书是一本谜题集,包括一些数学与计算机起源性的古典命题和一些比较新颖的谜题,序章的几句话非常好,在这里做简单的摘录. ...

  10. Puzzles

    Puzzles Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1 thr ...

随机推荐

  1. wmware 10 升级到11后,macos不能运行的问题

    解决方案: 1.由于wmware升级,原来的unlocker已不能使用. 所以得升级unlocker版本,目前支持wmware11的最新版本是2.0.4 http://www.insanelymac. ...

  2. (ex)Lucas总结

    (ex)Lucas总结 普通Lucas 求 \[ C_n^m\;mod\;p \] 其中\(n,m,p\leq 10^5\)其中\(p\)为质数 公式不难背,那就直接背吧... \[ C_n^m\;m ...

  3. rpmforge

    Could not retrieve mirrorlist http://mirrorlist.repoforge.org/el6/mirrors-rpmforge error was : PYCUR ...

  4. replace与replaceAll的区别

    这两者有些人很容易搞混,因此我在这里详细讲述下. replace的参数是char和CharSequence,即可以支持字符的替换,也支持字符串的替换(CharSequence即字符串序列的意思,说白了 ...

  5. 我们一起学习WCF 第二篇WCF承载多个接口

    前言:现在王大叔养了大批猪,赚了很多钱.但是最近发现养鸡也可以赚很多钱,他就像扩展业务开始养鸡.又过两年他发现市场对狗的需求量很大,他开始养狗.那么他改怎么做呢,不可能去修改猪住的地方把鸭子和狗放里面 ...

  6. Spring学习(十二)-----Spring @PostConstruct和@PreDestroy实例

    实现 初始化方法和销毁方法3种方式: 实现标识接口 InitializingBean,DisposableBean(不推荐使用,耦合性太高) 设置bean属性 Init-method destroy- ...

  7. Android 7.1.1系统源码下载、编译、刷机-Nexus 6实战

    想成为一位合格的Android程序员或者一位Android高级工程师是十分有必要知道Android的框架层的工作原理,要知道其工作原理那么就需要阅读Android的源代码. 想要阅读Android的源 ...

  8. Qt-QML-Canvas-雷达扫描仪表简单

    使用QML实现的雷达仪表的实现,主要实现了余晖扫描的实现,其他的还是比较简单的,后面可能会加入目标标识,目前的功能仅仅是一个假的扫描雷达 来看代码 /* 作者:张建伟 时间:2018年4月27日 简述 ...

  9. MySQL-MMM方案

    参考文档: 官方文档:http://mysql-mmm.org/mmm2:guide 本文对mmm方案做简单介绍,并做1个简单的验证. 一.MySQL-MMM方案 1. MMM方案简介 MMM(Mul ...

  10. 亚马逊CEO贝索斯致股东信:阐述公司未来计划

    亚马逊CEO 杰夫·贝索斯(Jeff Bezos)今天发布年度股东信, 详细描述了亚马逊的产品.服务和未来计划,当然,信中并没有任何的硬数据,比如说亚马逊Kindle的销量等等.但这封信也包括一些颇令 ...