这道题的DP的状态设计的很有想法啊。

假如我们一行一行来选择的话,状态将会极其复杂。

如果一列一列来看的话,比如你想选aij,那么第i列的前j个都要选,并且第i+1列的前j-1个都要选。

于是状态就很好设计了,定义dp[n][i][j]表示还剩下n个要选的砖块,当前选择第i列的前j个所能达到的最大分值。

那么dp[n][i][j]=max(dp[n-j][i+1][k]+sum[i][j])(j-1<=k<=n-i).

记忆化搜索一下就OK了。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int a[N][N], sum[N][N], dp[N*N][N][N], n; int dfs(int x, int col, int row){
if (x<||(col>n&&x)) return -INF;
if (~dp[x][col][row]) return dp[x][col][row];
if (x==) return row==?:-INF;
int res=-INF;
FOR(i,max(,row-),min(x,n-col)) res=max(res,dfs(x-row,col+,i)+sum[col][row]);
return dp[x][col][row]=res;
}
int main ()
{
int m, ans=;
scanf("%d%d",&n,&m); mem(dp,-);
FOR(i,,n) FOR(j,,n-i+) scanf("%d",&a[i][j]), sum[j][i]=sum[j][i-]+a[i][j];
FOR(i,,n) ans=max(ans,dfs(m,,i));
printf("%d\n",ans);
return ;
}

luogu 1437 敲砖块(DP)的更多相关文章

  1. 洛谷P1437 [HNOI2004]敲砖块(dp)

    题目背景 无 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 ...

  2. Luogu 1437 [HNOI2004]敲砖块 (动态规划)

    Luogu 1437 [HNOI2004]敲砖块 (动态规划) Description 在一个凹槽中放置了 n 层砖块.最上面的一层有n块砖,从上到下每层依次减少一块砖.每块砖都有一个分值,敲掉这块砖 ...

  3. 洛谷 P1437 [HNOI2004]敲砖块 解题报告

    P1437 [HNOI2004]敲砖块 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下所示. 1 ...

  4. [洛谷1437&Codevs1257]敲砖块<恶心的dp>

    题目链接:https://www.luogu.org/problem/show?pid=1437#sub http://codevs.cn/problem/1257/ 不得不说,这个题非常的恶心,在初 ...

  5. 2018.08.16 洛谷P1437 [HNOI2004]敲砖块(二维dp)

    传送门 看起来普通dp" role="presentation" style="position: relative;">dpdp像是有后效性的 ...

  6. 【洛谷 P1437】 [HNOI2004]敲砖块 (DP)

    题目链接 毒瘤DP题 因为\((i,j)\)能不能敲取决于\((i-1,j)\)和\((i-1,j+1)\),所以一行一行地转移显然是有后效性的. 于是考虑从列入手.我们把这个三角形"左对齐 ...

  7. luogu P1437 [HNOI2004]敲砖块

    三角形向右对齐后 你想打掉一个砖块,那么你必须打掉右上方的三角形,前缀和维护 若是第i列若是k个,那么它右边的那一列至少选了k-1个 f[i][j][k] 表示从后向前选到第 i 列第j个一共打了k次 ...

  8. [luoguP1437] [HNOI2004]敲砖块(DP)

    传送门 可以得到一个性质,如果打掉第i列的第j个,那么第i列的1~j-1个也会打掉. 如果第i列打j个,那么第i+1列至少打j-1个. #include <cstdio> #include ...

  9. 【题解】HNOI2004敲砖块

    题目传送门:洛谷1437 决定要养成随手记录做过的题目的好习惯呀- 这道题目乍看起来和数字三角形有一点像,但是仔细分析就会发现,因为选定一个数所需要的条件和另一个数所需要的条件会有重复的部分,所以状态 ...

随机推荐

  1. 【SQLSERVER】递归查询算法实例

    一.递归查询 1.结构: 递归CTE最少包含两个查询(也被称为成员). 第一个查询为定点成员,定点成员只是一个返回有效表的查询,用于递归的基础或定位点. 第二个查询被称为递归成员,使该查询称为递归成员 ...

  2. NB-IOT模组指令AT+NMSTATUS和AT+CGPADDR对比

    1. AT+NMSTATUS,这个指令是用来查询模块在IOT平台的注册情况.注册指的是lwm2m协议里面的注册机制,详细可以参考lwm2m协议. 2. AT+MREGSWT,设置重启之后,自动启动注册 ...

  3. 通过redis实现session共享-php

    <?php class redisSession{ /** * 保存session的数据库表的信息 */ private $_options = array( 'handler' => n ...

  4. Unity LineRenderer制作画版

    Source: using System.Collections; using System.Collections.Generic; using UnityEngine; public class ...

  5. windows下Mysql安装启动及常用操作

    1.下载mysql https://dev.mysql.com/downloads/ 2.配置环境变量 变量名:MYSQL_HOME 变量值:E:\MySql\mysql-8.0.15-winx64\ ...

  6. TPO-18 C2 Possible participation in a sociology project

    TPO-18 C2 Possible participation in a sociology project 第 1 段 1.listen to a conversation between a s ...

  7. python程序设计——面向对象程序设计:继承

    继承是为代码复用和设计复用而设计的 在继承关系中,已有的.设计好的类称为父类或基类,新设计的类为子类或派生类 派生类可以继承父类的公有成员,但不能继承其私有成员 如果需要在派生类中调用基类的方法,可以 ...

  8. DX孟虎点评新兴市场:巴西俄罗斯火爆背后

    [亿邦动力网讯]4月3日消息,在第九届中国中小企业电子商务大会暨2014中国(河南)跨境贸易电子商务峰会上,DX公司CEO孟虎对新兴市场做了详细的分析,指出在当今的跨境电商环境下,北美.西欧作为电商成 ...

  9. python3【基础】-集合

    集合( set):把不同的元素组成一起形成集合,是python基本的数据类型. 集合元素(set elements):组成集合的成员(不可重复) class set(object) | set() - ...

  10. The Bits (思维+找规律)

    Description Rudolf is on his way to the castle. Before getting into the castle, the security staff a ...