BZOJ2958 序列染色
果然清华集训的题目。。。显然的DP题但是不会做。。。
我们令f[i][j][w]表示状态方程
w表示到了字符串的第w个
i = 0, 1, 2分别表示k个B和k个W都没填上、k个B填上了k个W没填上、k个B和k个W都填上了三种状态
j = 0, 1分别表示第w位上填B/W
于是方程就比较容易列出来了,注意要用到容斥原理
/**************************************************************
Problem: 2958
User: rausen
Language: C++
Result: Accepted
Time:652 ms
Memory:33032 kb
****************************************************************/ #include <cstdio> using namespace std;
const int N = ;
const int mod = 1e9 + ; int n, k;
char st[N];
int s0[N], s1[N], f[][][N]; void read_in() {
int i;
char ch = getchar();
while (ch != 'W' && ch != 'B' && ch != 'X')
ch = getchar();
for (i = ; i <= n; ++i)
st[i] = ch, ch = getchar();
} inline int calc(char c, int *s, int i, int t) {
if (i < k || st[i - k] == c || s[i] - s[i - k]) return ;
return f[t - ][i == k ? : - t][i - k];
} int main() {
int i;
scanf("%d%d", &n, &k);
read_in();
f[][][] = ;
for (i = ; i <= n; ++i) {
s0[i] = s0[i - ] + (st[i] == 'W');
s1[i] = s1[i - ] + (st[i] == 'B');
if (st[i] != 'W') {
f[][][i] = (0ll + f[][][i - ] + f[][][i - ] - calc('B', s0, i, ) + mod) % mod;
f[][][i] = (0ll + f[][][i - ] + f[][][i - ] + calc('B', s0, i, )) % mod;
f[][][i] = (0ll + f[][][i - ] + f[][][i - ]) % mod;
}
if (st[i] != 'B') {
f[][][i] = (0ll + f[][][i - ] + f[][][i - ]) % mod;
f[][][i] = (0ll + f[][][i - ] + f[][][i - ] - calc('W', s1, i, ) + mod) % mod;
f[][][i] = (0ll + f[][][i - ] + f[][][i - ] + calc('W', s1, i, )) % mod;
}
}
printf("%d\n", (f[][][n] + f[][][n]) % mod);
return ;
}
(p.s. Orz 江哥...)
BZOJ2958 序列染色的更多相关文章
- bzoj2958: 序列染色(DP)
2958: 序列染色 题目:传送门 题解: 大难题啊(还是我太菜了) %一发大佬QTT 代码: #include<cstdio> #include<cstring> #incl ...
- BZOJ2958 序列染色(动态规划)
令f[i][0/1/2][0/1]表示前i位,不存在满足要求的B串和W串/存在满足要求的B串不存在W串/存在满足要求的B串和W串,第i位填的是B/W的方案数.转移时考虑连续的一段填什么.大讨论一波后瞎 ...
- bzoj2958: 序列染色&&3269: 序列染色
DP这种东西,考场上就只能看命了.. #include<cstdio> #include<iostream> #include<cstring> #include& ...
- BZOJ:2958 序列染色 DP
bzoj2958 序列染色 题目传送门 Description 给出一个长度为N由B.W.X三种字符组成的字符串S,你需要把每一个X染成B或W中的一个. 对于给出的K,问有多少种染色方式使得存在整数a ...
- BZOJ 1006 [HNOI2008] 神奇的国度(简单弦图的染色)
题目大意 K 国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即 AB 相互认识,BC 相互认识,CA 相互认识,是简洁高效的.为了巩固三角关系,K 国禁止四边关系,五边关系等 ...
- [BZOJ5306][HAOI2018]染色
bzoj luogu Description 给一个长度为\(n\)的序列染色,每个位置上可以染\(m\)种颜色.如果染色后出现了\(S\)次的颜色有\(k\)种,那么这次染色就可以获得\(w_k\) ...
- Solution -「HAOI 2018」「洛谷 P4491」染色
\(\mathcal{Description}\) Link. 用 \(m\) 种颜色为长为 \(n\) 的序列染色,每个位置一种颜色.对于一种染色方案,其价值为 \(w(\text{出现恰 ...
- 2016 Multi-university training contest
day 1 A 给G,w(e)1M(diff),|V|100K,|E|1M,求 MST MST上任意两点间距离的期望 显然MST唯一 E(dis(u,v))可以通过计算每条边的贡献加出来 B n个并行 ...
- bzoj1006 [HNOI2008]神奇的国度
1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2304 Solved: 1043 Description ...
随机推荐
- 【Lua】LDoc生成Lua文档工具的使用
参考资料: http://my.oschina.net/wangxuanyihaha/blog/188909 LDoc介绍: LDoc是一个Lua的文档生成工具,过去,比较常用的Lua生成 ...
- vim多行注释和取消注释 Ubuntu
多行注释: 1. 进入命令行模式,按ctrl + v进入 visual block模式,然后按d 是选择到最后一行,也可以直接光标上下左右,把需要注释的行标记起来 2. 按大写字母I,再插入注释符,例 ...
- ACM-ICPC 2018 焦作赛区网络预赛 Solution
A. Magic Mirror 水. #include <bits/stdc++.h> using namespace std; int t; ]; inline bool work() ...
- MyEclipse优化,解决MyEclipse运行慢、卡顿问题
工具: myeclipse2015 2.0 最近想用myeclipse做一下测试,发现myeclipse运行非常卡,直接影响代码的开发,而且还出现软件卡退的情况,让我十分恼火. 一.加大JVM的非 ...
- mongodb的存储引擎
mongodb版本为3.4 mongodb存储引起的一些概述 存储引擎是MongoDB的核心组件,负责管理数据如何存储在硬盘和内存上.从MongoDB 3.2 版本开始,MongoDB 支持多数据存储 ...
- 2018-2019-1 20189218《Linux内核原理与分析》第二周作业
问题一 动态库链接找不到库问题 这个问题当时确实对我造成了很大的困扰,虽然最终仍然成功用动态库链接但是问题并没有解决.现在回过头来看却觉得有点蠢,但出错的过程仍然值得总结.首先看我的目录结构: 可以看 ...
- 20145325张梓靖 《Java程序设计》第7周学习总结
20145325张梓靖 <Java程序设计>第7周学习总结 教材学习内容总结 时间的度量 格林威治时间,简称GMT时间,由观察太阳而得来:世界时,UT:国际原子时,TAI:世界协调时间,U ...
- 在linux上安装Drupal
前言:国内用drupal的并不太多,网上资料也很少.要注意的是drupal尽量别使用apt来安装,特别是ubuntu平台的drupal做出了一定的更改,会妨碍后期的学习和使用.在安装drupal前要先 ...
- TrueCrypt简介及TrueCrypt 7.1a Source.zip源码在VS2008下的编译过程
转载:http://blog.csdn.net/cncrypt/article/details/51565493 转载:http://www.cnblogs.com/shenjieblog/p/521 ...
- 转 已知两点坐标和半径求圆心坐标程序C++
数学思想:利用圆方程和直线方程 已知两点坐标和半径求圆心坐标程序 #include <iostream> #include <fstream> #include <c ...