转载自:https://vimsky.com/article/3403.html

Spark中ml和mllib的主要区别和联系如下:

  • ml和mllib都是Spark中的机器学习库,目前常用的机器学习功能2个库都能满足需求。
  • spark官方推荐使用ml, 因为ml功能更全面更灵活,未来会主要支持ml,mllib很有可能会被废弃(据说可能是在spark3.0中deprecated)。
  • ml主要操作的是DataFrame, 而mllib操作的是RDD,也就是说二者面向的数据集不一样。相比于mllib在RDD提供的基础操作,ml在DataFrame上的抽象级别更高,数据和操作耦合度更低。
    • DataFrame和RDD什么关系?DataFrame是Dataset的子集,也就是Dataset[Row], 而DataSet是对RDD的封装,对SQL之类的操作做了很多优化。
  • 相比于mllib在RDD提供的基础操作,ml在DataFrame上的抽象级别更高,数据和操作耦合度更低。
  • ml中的操作可以使用pipeline, 跟sklearn一样,可以把很多操作(算法/特征提取/特征转换)以管道的形式串起来,然后让数据在这个管道中流动。大家可以脑补一下Linux管道在做任务组合时有多么方便。
  • ml中无论是什么模型,都提供了统一的算法操作接口,比如模型训练都是fit;不像mllib中不同模型会有各种各样的trainXXX
  • mllib在spark2.0之后进入维护状态, 这个状态通常只修复BUG不增加新功能。

以上就是ml和mllib的主要异同点。下面是ml和mllib逻辑回归的例子,可以对比看一下, 虽然都是模型训练和预测,但是画风很不一样。

mllib中逻辑回归的例子

    sparse_data = [
LabeledPoint(0.0, SparseVector(, {: 0.0})),
LabeledPoint(1.0, SparseVector(, {: 1.0})),
LabeledPoint(0.0, SparseVector(, {: 1.0})),
LabeledPoint(1.0, SparseVector(, {: 2.0}))
]
lrm = LogisticRegressionWithSGD.train(sc.parallelize(sparse_data), iterations=)
lrm.predict(array([0.0, 1.0])) lrm.predict(array([1.0, 0.0])) lrm.predict(SparseVector(, {: 1.0})) lrm.predict(SparseVector(, {: 1.0})) import os, tempfile
path = tempfile.mkdtemp()
lrm.save(sc, path)
sameModel = LogisticRegressionModel.load(sc, path)
sameModel.predict(array([0.0, 1.0])) sameModel.predict(SparseVector(, {: 1.0})) from shutil import rmtree
try:
rmtree(path)
except:
pass
multi_class_data = [
LabeledPoint(0.0, [0.0, 1.0, 0.0]),
LabeledPoint(1.0, [1.0, 0.0, 0.0]),
LabeledPoint(2.0, [0.0, 0.0, 1.0])
]
data = sc.parallelize(multi_class_data)
mcm = LogisticRegressionWithLBFGS.train(data, iterations=, numClasses=)
mcm.predict([0.0, 0.5, 0.0]) mcm.predict([0.8, 0.0, 0.0]) mcm.predict([0.0, 0.0, 0.3])

ml中的逻辑回归的例子

 from pyspark.sql import Row
from pyspark.ml.linalg import Vectors
bdf = sc.parallelize([
Row(label=1.0, weight=2.0, features=Vectors.dense(1.0)),
Row(label=0.0, weight=2.0, features=Vectors.sparse(, [], []))]).toDF()
blor = LogisticRegression(maxIter=, regParam=0.01, weightCol="weight")
blorModel = blor.fit(bdf)
blorModel.coefficients
DenseVector([5.5 ])
blorModel.intercept
-2.68
mdf = sc.parallelize([
Row(label=1.0, weight=2.0, features=Vectors.dense(1.0)),
Row(label=0.0, weight=2.0, features=Vectors.sparse(, [], [])),
Row(label=2.0, weight=2.0, features=Vectors.dense(3.0))]).toDF()
mlor = LogisticRegression(maxIter=, regParam=0.01, weightCol="weight",
family="multinomial")
mlorModel = mlor.fit(mdf)
print(mlorModel.coefficientMatrix)
DenseMatrix([[-2.3 ],
[ 0.2 ],
[ 2.1 ]])
mlorModel.interceptVector
DenseVector([2.0 , 0.8 , -2.8 ])
test0 = sc.parallelize([Row(features=Vectors.dense(-1.0))]).toDF()
result = blorModel.transform(test0).head()
result.prediction
0.0
result.probability
DenseVector([0.99 , 0.00 ])
result.rawPrediction
DenseVector([8.22 , -8.22 ])
test1 = sc.parallelize([Row(features=Vectors.sparse(, [], [1.0]))]).toDF()
blorModel.transform(test1).head().prediction
1.0
blor.setParams("vector")
Traceback (most recent call last): TypeError: Method setParams forces keyword arguments.
lr_path = temp_path + "/lr"
blor.save(lr_path)
lr2 = LogisticRegression.load(lr_path)
lr2.getMaxIter() model_path = temp_path + "/lr_model"
blorModel.save(model_path)
model2 = LogisticRegressionModel.load(model_path)
blorModel.coefficients[] == model2.coefficients[]
True
blorModel.intercept == model2.intercept
True

Spark中ml和mllib的区别的更多相关文章

  1. spark:ML和MLlib的区别

    ML和MLlib的区别如下: ML是升级版的MLlib,最新的Spark版本优先支持ML. ML支持DataFrame数据结构和Pipelines,而MLlib仅支持RDD数据结构. ML明确区分了分 ...

  2. Spark机器学习中ml和mllib中矩阵、向量

    1:Spark ML与Spark MLLIB区别? Spark MLlib是面向RDD数据抽象的编程工具类库,现在已经逐渐不再被Spark团队支持,逐渐转向Spark ML库,Spark ML是面向D ...

  3. spark的ML和MLLib两个包区别和联系?

    原文链接:https://www.zhihu.com/question/35225203/answer/123986969 1. 技术角度上,面向的数据集类型不一样:ML的API是面向Dataset的 ...

  4. spark中map与flatMap的区别

    作为spark初学者对,一直对map与flatMap两个函数比较难以理解,这几天看了和写了不少例子,终于把它们搞清楚了 两者的区别主要在于action后得到的值 例子: import org.apac ...

  5. Spark中cache和persist的区别

    cache和persist都是用于将一个RDD进行缓存的,这样在之后使用的过程中就不需要重新计算了,可以大大节省程序运行时间. cache和persist的区别 基于Spark 1.6.1 的源码,可 ...

  6. Spark中repartition和partitionBy的区别

    repartition 和 partitionBy 都是对数据进行重新分区,默认都是使用 HashPartitioner,区别在于partitionBy 只能用于 PairRDD,但是当它们同时都用于 ...

  7. Spark中groupBy groupByKey reduceByKey的区别

    groupBy 和SQL中groupby一样,只是后面必须结合聚合函数使用才可以. 例如: hour.filter($"version".isin(version: _*)).gr ...

  8. spark中map与mapPartitions区别

    在spark中,map与mapPartitions两个函数都是比较常用,这里使用代码来解释一下两者区别 import org.apache.spark.{SparkConf, SparkContext ...

  9. 大数据学习day19-----spark02-------0 零碎知识点(分区,分区和分区器的区别) 1. RDD的使用(RDD的概念,特点,创建rdd的方式以及常见rdd的算子) 2.Spark中的一些重要概念

    0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间 ...

随机推荐

  1. VMWare虚拟机提示:打不开磁盘…或它所依赖的某个快照磁盘,开启模块DiskEarly的操作失败,未能启动虚拟机

    将电脑上存在的虚拟机复制一份后打开运行,弹出错误提示: 打不开磁盘…或它所依赖的某个快照磁盘,开启模块DiskEarly的操作失败,未能启动虚拟机. 解决方法如下: 打开存放虚拟机系统硬盘的所在文件夹 ...

  2. VS2008远程调试操作方法

    前言 最近遇到一个问题:组态王在本地调试机上运行正常,但在远程测试机上运行却出现了崩溃.本机上装有Visual Studio 2008,测试机上则没有.于是,在网上找资料,想利用远程调试方法,在本机上 ...

  3. Post方式调用wcf服务

    我们平常在PC端调用WCF服务,只要知道WCF服务的地址,客户端直接添加引用服务就可以使用了,殊不知还有其他方式,其实,我们也可以 通过HTTP POST的方式调用WCF服务,这样就不用添加引用了,在 ...

  4. Cocostudio学习笔记(2) Button + CheckBox

    这篇记录了两个控件的使用流程:Button 和 CheckBox. ------------------------------------------------------------------ ...

  5. zookeeper-端口说明

    一.zookeeper有三个端口(可以修改) 1.2181 2.3888 3.2888 二.3个端口的作用 1.2181:对cline端提供服务 2.3888:选举leader使用 3.2888:集群 ...

  6. MQTT的学习研究(四)moquette-mqtt 的使用之mqtt Blocking API客户端订阅并接收主题信息

    在上面两篇关于mqtt的broker的启动和mqtt的服务端发布主题信息之后,我们客户端需要订阅相关的信息并接收相关的主题信息. package com.etrip.mqtt; import java ...

  7. IIS 无法访问.net的动态文件

    编译器错误消息:CS0016: 未能写入输出文件“c:\Windows\Microsoft.NET\Framework64\v4.0.30319... 在“c:\windows\temp”这个文件夹添 ...

  8. centos6.5安装sendmail

    1.下载安装sendEmail(下载绿色版,解压可直接使用) wget http://caspian.dotconf.net/menu/Software/SendEmail/sendEmail-v1. ...

  9. R中的各种概率统计分布

    名称 名称 R对应的名字 附加参数 β分布 beta beta shape1, shape2, ncp 二项式分布 binomial binom size, prob 柯西分布 Cauchy cauc ...

  10. java8新增的日期时间包

    Clock clock=Clock.systemUTC(); System.out.println("当前时刻为:"+clock.instant()); System.out.pr ...