A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.

Input##

Each input file contains one test case. Each case starts with a line containing 0 < N < 100, the number of nodes in a tree, and M (< N), the number of non-leaf nodes. Then M lines follow, each in the format:



ID K ID[1] ID[2] ... ID[K]



where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 01.

Output##

For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.



The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output "0 1" in a line.

Sample Input##

2 1

01 1 02

Sample Output##

0 1



题目大意:计算树的每一层上有多少个叶子节点并按层输出

分析:使用深度有限搜索(DFS)递归遍历树上每一个节点的孩子节点,如果这个节点没有孩子节点,就逐层返回。child[i]集合记录每个节点的孩子节点,leaf[i]数组记录每一层上的叶子节点,max_h记录最大层数,层数从1开始。也可以使用广度优先搜索(BFS),不同之处是DFS使用集合,BFS使用队列,且BFS不用使用递归,只需要第一个节点入队列后判断队列非空即可。

//DFS求叶子节点
#include <iostream>
#include <vector>
using namespace std;
int leaf[100],max_h=1;
vector<int> child[100];
void DFS(int id_num,int h)
{
if(max_h<h) max_h=h;
int k=child[id_num].size();
if(k==0){
leaf[h]+=1;
return;
}
for(int i=0;i<k;i++)
{
DFS(child[id_num][i],h+1);
}
}
int main() {
int n,m;
scanf("%d %d",&n,&m);
int id_num,k,id;
for(int i=0;i<m;i++){
scanf("%d %d",&id_num,&k);
for(int j=0;j<k;j++){
scanf("%d",&id);
child[id_num].push_back(id);
}
}
DFS(1,1);
for(int i=1;i<=max_h;i++){
if(i!=1) printf(" ");
printf("%d",leaf[i]);
}
printf("\n");
return 0;
}

1004. Counting Leaves(30)—PAT 甲级的更多相关文章

  1. PAT 解题报告 1004. Counting Leaves (30)

    1004. Counting Leaves (30) A family hierarchy is usually presented by a pedigree tree. Your job is t ...

  2. PAT 1004 Counting Leaves (30分)

    1004 Counting Leaves (30分) A family hierarchy is usually presented by a pedigree tree. Your job is t ...

  3. 1004. Counting Leaves (30)

    1004. Counting Leaves (30)   A family hierarchy is usually presented by a pedigree tree. Your job is ...

  4. PTA 1004 Counting Leaves (30)(30 分)(dfs或者bfs)

    1004 Counting Leaves (30)(30 分) A family hierarchy is usually presented by a pedigree tree. Your job ...

  5. 1004 Counting Leaves (30分) DFS

    1004 Counting Leaves (30分)   A family hierarchy is usually presented by a pedigree tree. Your job is ...

  6. 【PAT甲级】1004 Counting Leaves (30 分)(BFS)

    题意:给出一棵树的点数N,输入M行,每行输入父亲节点An,儿子个数n,和a1,a2,...,an(儿子结点编号),从根节点层级向下依次输出当前层级叶子结点个数,用空格隔开.(0<N<100 ...

  7. PAT 1004. Counting Leaves (30)

    A family hierarchy is usually presented by a pedigree tree.  Your job is to count those family membe ...

  8. PAT A 1004. Counting Leaves (30)【vector+dfs】

    题目链接:https://www.patest.cn/contests/pat-a-practise/1004 大意:输出按层次输出每层无孩子结点的个数 思路:vector存储结点,dfs遍历 #in ...

  9. 【PAT Advanced Level】1004. Counting Leaves (30)

    利用广度优先搜索,找出每层的叶子节点的个数. #include <iostream> #include <vector> #include <queue> #inc ...

  10. PAT (Advanced Level) 1004. Counting Leaves (30)

    简单DFS. #include<iostream> #include<cstring> #include<cmath> #include<algorithm& ...

随机推荐

  1. Angular入门教程三

    4.6指令(directive) 通过使用模板,我们可以把model和controller中的数据组装起来呈现给浏览器,还可以通过数据绑定,实时更新视图,让我们的页面变成动态的. 模板中可以使用的东西 ...

  2. JDK配置步骤

    1.安装jkd1.6.0以上版本. 2.安装结束后,运行cmd.键入: java -version判断JDK是否安装成功,如下图所示. 3.首先需要到官网上下载JDK这款软件,本人下载的是jdk-6u ...

  3. restful知识点之五解析器_响应器_分页器

    解析器 request.post:当数据时content-type urlencoded类型时才有数据 当content-type:是formdata时需要从request.body里取数据 requ ...

  4. IntelliJ Idea编译报错:javacTask: 源发行版 1.8 需要目标发行版 1.8

    解决办法: 1.Project Settings-Modules,选择项目,选择language level 8 2.选中项目,右击选择Maven-->Reimport, 再次编译. 3.Fil ...

  5. C# 试图加载格式不正确的程序。 (异常来自 HRESULT:0x8007000B)

    C# 在调用C++dll时,可能会出现 :试图加载格式不正确的程序. (异常来自 HRESULT:0x8007000B)这个错误. 一般情况下是C#目标平台跟C++dll不兼容,64位跟32位兼容性问 ...

  6. Effective C++(5) 了解C++默默地编写并调用哪些函数

    预热: 一个空的类,当编译器处理过之后,就包含: 一个copy构造函数 一个重载赋值操作符 一个析构函数 一个默认构造函数 Demo: class Empty() { }; // 声明一个空的类 cl ...

  7. EF学习之CodeFirst(一)--创建Model

    一.创建Model 创建Model类有两种方式: 1.直接创建model 所有约束条件都以特性的方式写在model的属性上面,映射到数据库的table表名标识在class上,例如: [Table(&q ...

  8. Win10 Docker修改镜像存储位置

    发生现象: 在windows10下安装docker for windows,随着用docker pull image文件后,C盘的容量越来越小了,你可能也有一种跟我一样的想法,想改变默认的安装路径,本 ...

  9. C# 冒泡排序法、插入排序法、选择排序法

    冒泡排序法 是数组等线性排列的数字从大到小或从小到大排序. 以从小到大排序为例. 数据 11, 35, 39, 30, 7, 36, 22, 13, 1, 38, 26, 18, 12, 5, 45, ...

  10. December 13th 2016 Week 51st Tuesday

    Life is a sail trip full of chances and challenges. 人生的旅途中充满了机遇和挑战. A boat sails on the sea, the vas ...