【BZOJ1396】识别子串&【BZOJ2865】字符串识别(后缀自动机)
【BZOJ1396】识别子串&【BZOJ2865】字符串识别(后缀自动机)
题面
自从有了DBZOJ
终于有地方交权限题了
题解
很明显,只出现了一次的串
在\(SAM\)的\(right/endpos\)集合大小一定为\(1\)
换句话说,在\(parent\)树上是叶子节点
找到所有这样的节点,
假设它的\(len=r\),它父亲的\(len=p\),它的结束位置为显然就是\(r\)
令\(l=r-p\)
以\(r\)结尾,
并且只出现了一次的串的左端点
为\(1..l\),那么,他们的答案可以更新为\(r+1-i\)
剩下的位置\(l+1..r\),他们无法作为左端点,只能包含在这些串中
于是找到一个最短的包含他们的串\(S[l..r]\)
所以,这段区间的答案可以更新为\(r-l+1\)
显然不好一起维护,
于是开两棵线段树,一个维护\(r+1-i\),先不考虑\(i\),最后减去就好
另一个直接维护\(r-l+1\)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define lson (now<<1)
#define rson (now<<1|1)
#define MAX 111111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n;
bool vis[MAX<<1];
struct SAM
{
struct Node
{
int son[26];
int ff,len;
}t[MAX<<1];
int last,tot;
void init(){last=tot=1;}
void extend(int c)
{
int p=last,np=++tot;last=np;
t[np].len=t[p].len+1;
while(p&&!t[p].son[c])t[p].son[c]=np,p=t[p].ff;
if(!p)t[np].ff=1;
else
{
int q=t[p].son[c];
if(t[q].len==t[p].len+1)t[np].ff=q;
else
{
int nq=++tot;
t[nq]=t[q];t[nq].len=t[p].len+1;
t[np].ff=t[q].ff=nq;
while(p&&t[p].son[c]==q)t[p].son[c]=nq,p=t[p].ff;
}
}
}
}SAM;
char ch[MAX];
struct SegMentTree
{
struct Node{int v;}t[MAX<<2];
void Build(int now,int l,int r)
{
t[now].v=1e9;if(l==r)return;
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
}
void puttag(int now,int w){t[now].v=min(t[now].v,w);}
void pushdown(int now)
{
if(t[now].v==1e9)return;
puttag(lson,t[now].v);puttag(rson,t[now].v);
t[now].v=1e9;
}
void Modify(int now,int l,int r,int L,int R,int w)
{
if(L>R)return;
if(L<=l&&r<=R){puttag(now,w);return;}
pushdown(now);int mid=(l+r)>>1;
if(L<=mid)Modify(lson,l,mid,L,R,w);
if(R>mid)Modify(rson,mid+1,r,L,R,w);
}
int Query(int now,int l,int r,int p)
{
if(l==r)return t[now].v;
pushdown(now);int mid=(l+r)>>1;
if(p<=mid)return Query(lson,l,mid,p);
else return Query(rson,mid+1,r,p);
}
}A,B;
int main()
{
SAM.init();
scanf("%s",ch+1);n=strlen(ch+1);
for(int i=1;i<=n;++i)SAM.extend(ch[i]-97);
for(int i=1;i<=SAM.tot;++i)vis[SAM.t[i].ff]=true;
A.Build(1,1,n);B.Build(1,1,n);
for(int i=1;i<=SAM.tot;++i)
if(!vis[i])
{
int l=SAM.t[i].len-SAM.t[SAM.t[i].ff].len,r=SAM.t[i].len;
A.Modify(1,1,n,l,r,r-l+1);
B.Modify(1,1,n,1,l-1,r+1);
}
for(int i=1;i<=n;++i)
printf("%d\n",min(A.Query(1,1,n,i),B.Query(1,1,n,i)-i));
return 0;
}
【BZOJ1396】识别子串&【BZOJ2865】字符串识别(后缀自动机)的更多相关文章
- BZOJ1396 识别子串 和 BZOJ2865 字符串识别
字符串识别 2865: 字符串识别 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 839 Solved: 261[Submit][Status][D ...
- bzoj2865 字符串识别
Description XX在进行字符串研究的时候,遇到了一个十分棘手的问题. 在这个问题中,给定一个字符串S,与一个整数K,定义S的子串T=S(i, j)是关于第K位的识别子串,满足以下两个条件: ...
- BZOJ 3473: 字符串 [广义后缀自动机]
3473: 字符串 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 354 Solved: 160[Submit][Status][Discuss] ...
- 51nod1469 淋漓字符串(后缀自动机)
题目大意: 首先,我们来定义一下淋漓尽致子串. 1.令原串为S. 2.设子串的长度为len,在原串S中出现的次数为k,令其出现的位置为p1, p2, ....pk(即这个子串在原串中[pi,pi + ...
- 【bzoj3277/bzoj3473】串/字符串 广义后缀自动机
题目描述 字符串是oi界常考的问题.现在给定你n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串(注意包括本身). 输入 第一行两个整数n,k.接下来n行每行一个 ...
- 【BZOJ4556】[TJOI2016&HEOI2016] 字符串(后缀自动机+线段树合并+二分)
点此看题面 大致题意: 给你一个字符串\(s\),每次问你一个子串\(s[a..b]\)的所有子串和\(s[c..d]\)的最长公共前缀. 二分 首先我们可以发现一个简单性质,即要求最长公共前缀,则我 ...
- 不在B中的A的子串数量 HDU - 4416 (后缀自动机模板题目)
题目: 给定一个字符串a,又给定一系列b字符串,求字符串a的子串不在b中出现的个数. 题解: 先将所有的查询串放入后缀自动机(每次将sam.last=1)(算出所有子串个数) 然后将母串放入后缀自动机 ...
- [十二省联考2019]字符串问题——后缀自动机+parent树优化建图+拓扑序DP+倍增
题目链接: [十二省联考2019]字符串问题 首先考虑最暴力的做法就是对于每个$B$串存一下它是哪些$A$串的前缀,然后按每组支配关系连边,做一遍拓扑序DP即可. 但即使忽略判断前缀的时间,光是连边的 ...
- 字符串(后缀自动机):Codeforces Round #129 (Div. 1) E.Little Elephant and Strings
E. Little Elephant and Strings time limit per test 3 seconds memory limit per test 256 megabytes inp ...
- bzoj 3277: 串 & bzoj 3473: 字符串【后缀自动机||后缀数组】
建一个广义后缀自动机(每加完一个串都返回root),在parent树上dpsum记录合法长度,打着时间戳往上跳,最后每个串在自动机上跑一变统计答案即可. 后缀数组理解起来可能方便一点,但是难写,就只说 ...
随机推荐
- 监听Entity Framework生成的Sql语句
Entity Framework为我们提供了很大的方便,但有时候,我们想看看EF生成的Sql语句到底是怎样的,一种方式是我们可以启用Sql Server Profer工具.今天介 ...
- golang 单元测试
单元测试是质量保证十分重要的一环,好的单元测试不仅能及时地发现问题,更能够方便地调试,提高生产效率.所以很多人认为写单元测试是需要额外的时间,会降低生产效率,是对单元测试最大的偏见和误解. go 语言 ...
- Spring学习(二)-----eclipse新建spring项目
一:准本工作(下载需要的jar包) 1.下载准备Spring-framework-4.2.0 链接为: http://repo.springsource.org/libs-release-local/ ...
- PHP反序列化漏洞代码审计—学习资料
1.什么是序列化 A.PHP网站的定义: 所有php里面的值都可以使用函数serialize()来返回一个包含字节流的字符串来表示.unserialize()函数能够重新把字符串变回php原来的值. ...
- Android手机测试-ddms&monitor-抓crash,log
1.安装adb offline解决办法: 原因就是android 4.2以上的版本过高,sdk的adb驱动不匹配,需要升级.我原本的adb是1.0.29,升级为1.0.31,问题就解决了. 2.安装s ...
- Windows下Mongodb安装部署
1.下载安装包 mongodb-win32-x86_64-enterprise-windows-64-3.6.4.zip 解压 安装失败(当前环境windows server2012 R2):已验证可 ...
- Druid Monitor小记
继上篇DruidDataSource源码分析之后 , 公司又要求做一个Druid的数据库监控 , 以及spring监控 , 研究一小时 , 总结出了一点经验 , 特此贴出来分享一下 一 . 利用Dru ...
- KETTLE并行
1.转换的并行 转换的并行是改变复制的数量 上面的转换相当于下面的: 实际是把一个任务拆成三部分执行,相当于在一个数据库连接中做了三次查询,数据库连接的开销没有增加,但是有三个进程一起执行. 2.jo ...
- rest_framework之版本控制
简介 API版本控制可以用来在不同的客户端使用不同的行为.REST框架提供了大量不同的版本设计. 版本控制是由传入的客户端请求决定的,并且可能基于请求URL,或者基于请求头. 有许多有效的方法达到版本 ...
- USACO 1.4.2 Mother's Mil 母亲的牛奶(DFS)
Description 农民约翰有三个容量分别是A,B,C升的桶,A,B,C分别是三个从1到20的整数,最初,A和B桶都是空的,而C桶是装满牛奶的.有时,约翰把牛奶从一个桶倒到另一个桶中,直到被灌桶装 ...