描述

输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大。



例如 1,-3,5,1,-2,3



当m=4时,S=5+1-2+3=7

当m=2或m=3时,S=5+1=6

输入格式

第一行两个数n,m

第二行有n个数,要求在n个数找到最大子序和

输出格式

一个数,数出他们的最大子序和

测试样例1

输入

6 4 

1 -3 5 1 -2 3

输出

7

备注

数据范围:

100%满足n,m<=300000

题解

我们由题设f[i]为i位置最大子段和,得到状态转移方程f[i] = max(f[i - 1],sum[i] - sum[k]);  【i - k <= m】
很明显这样做是O(n ^ 2)
对于求sum[i] - sum[k]的最大值,我们可以用单调队列优化

单调队列
单调队列,顾名思义,就是单调的队列,用以O(1)求最值
单调队列用双向队列维护,队首是最值【假设是最大】
每次我们向队尾插入一个元素时,我们若队尾的元素比它要小就将他删除,直至队列为空或者队尾元素大于插入
元素,再将其插入
例如5 3 1,我们要插入4
检查1 < 4,队列变为5 3
检查3 < 4,队列变为5
检查5 > 4,队列变为5 4
插入完成

你会发现这样的操作能满足队列一定单调,而队首就是我们要的值
但注意随着时间的推移,队首元素可能“过时”,就是超出了我们所规定的范围,这个时候就删除队首,直至满足范围
由于每个元素最多进队出队一次,所以总复杂度O(n)

那么这题就好做了,我们用一个单调队列维护前m个sum值,每次只用O(1)就可以转移方程
复杂度O(n)

  1. #include<iostream>
  2. #include<cstdio>
  3. #include<cstring>
  4. #include<algorithm>
  5. #define LL long long int
  6. #define REP(i,n) for (int i = 1; i <= (n); i++)
  7. #define fo(i,x,y) for (int i = (x); i <= (y); i++)
  8. #define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
  9. using namespace std;
  10. const int maxn = 300005,maxm = 100005,INF = 1000000000;
  11. inline int read(){
  12. int out = 0,flag = 1;char c = getchar();
  13. while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
  14. while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
  15. return out * flag;
  16. }
  17. int n,m,q[maxn],head,tail,sum[maxn],f[maxn];
  18. int main()
  19. {
  20. n = read(); m = read();
  21. REP(i,n) sum[i] = sum[i - 1] + read();
  22. head = tail = 0; q[head] = 0;
  23. for (int i = 1; i <= n; i++){
  24. while (i - q[head] > m) head++;
  25. f[i] = max(f[i - 1],sum[i] - sum[q[head]]);
  26. q[++tail] = i;
  27. while (tail > head && sum[q[tail]] < sum[q[tail - 1]]) q[tail - 1] = q[tail],tail--;
  28. }
  29. cout<<f[n]<<endl;
  30. return 0;
  31. }

tyvj1305 最大子序和 【单调队列优化dp】的更多相关文章

  1. Tyvj1305最大子序和(单调队列优化dp)

    描述 输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大. 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7当m=2或m=3时,S=5+1=6 输入 ...

  2. CF939F Cutlet (单调队列优化DP)

    题目大意:要煎一块有两个面的肉,只能在一段k不相交的时间段$[l_{i},r_{i}]$内翻转,求$2*n$秒后,保证两个面煎的时间一样长时,需要最少的翻转次数,$n<=100000$,$k&l ...

  3. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  4. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  5. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  6. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  7. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  8. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

  9. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  10. 单调队列以及单调队列优化DP

    单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...

随机推荐

  1. WCF中操作的分界于调用顺序和会话的释放

    操作分界 在WCF操作契约的设计中,有时会有一些调用顺序的业务,有的操作不能最先调用,有的操作必须最后调用,比如在从一个箱子里拿出一件东西的时候,必须先要执行打开箱子的操作,而关上箱子的操作应该在一切 ...

  2. 创建Springmvc项目时,特殊拦截器失效情况的原因及解决办法

    最近开发一个新项目时,搭建springmvc框架时,遇到一个拦截器失效的情况困扰了两天.现在解决,特此记录一下. 拦截器不生效的情况描述: 设置登录拦截的时候,首先登录接口肯定是不用拦截的.所以需要在 ...

  3. Struts 2(二):使用Struts2

    本文简单描述如何在Eclipse中使用使用Struts2,并介绍一下Struts2的配置文件 注:Struts2默认需要Java 5.0及其以上版本的运行环境支持,Web容器需要支持Servlet 2 ...

  4. javaweb(三十四)——使用JDBC处理MySQL大数据

    一.基本概念 大数据也称之为LOB(Large Objects),LOB又分为:clob和blob,clob用于存储大文本,blob用于存储二进制数据,例如图像.声音.二进制文等. 在实际开发中,有时 ...

  5. Cannot get connection for URL jdbc:oracle:thin:调用中无效参数

    这个报错明显是连接数据库的url没有写对,但是,我要说的是但是,同样的代码生产没有问题,而测试环境报错了.最终哥找到那个错误,jdbc连接数据库时,有ResultSet,PreparedStateme ...

  6. ideal快捷键

    百度一搜索,发现很多快捷键说明,我但是有些说得不对的,我列出来的这些快捷键,有一部分是需要你百度好久,甚至百度一上午才能搜索出来的,并且戴着老花镜.这样的话,在实际工作者,对于初级程序员来说,成本太高 ...

  7. RyuBook1.0案例三:REST Linkage

    REST Linkage 该小结主要介绍如何添加一个REST Link 函数 RYU本身提供了一个类似WSGI的web服务器功能.借助这个功能,我们可以创建一个REST API. 基于创建的REST ...

  8. 第二次ScrumMeeting博客

    第二次ScrumMeeting博客 本次会议于10月26日(四)22时整在3公寓725房间召开,持续15分钟. 与会人员:刘畅.方科栋.辛德泰.窦鑫泽.张安澜. 1. 每个人的工作(有Issue的内容 ...

  9. 用 Python 构建一个极小的区块链

    虽然有些人认为区块链是一个早晚会出现问题的解决方案,但是毫无疑问,这个创新技术是一个计算机技术上的奇迹.那么,究竟什么是区块链呢? 区块链 以比特币(Bitcoin)或其它加密货币按时间顺序公开地记录 ...

  10. mysql优化建议21条

    转自: http://blog.csdn.net/waferleo/article/details/7179009 今 天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于 ...