bzoj 4177 Mike的农场
bzoj 4177 Mike的农场
- 思维有些江化了,一上来就想费用流做法,但其实就是个最小割啊.
- 考虑先将所有的收益拿到,再减去不能拿的以及三元组 \((i,j,k)\) 产生的代价.即,先让 \(ans=\sum a_i+b_i+\sum_{(S,a,b)} b\).
- 然后要让减去的最小,尝试构造一个最小割模型.建一个源点 \(S\) ,一个汇点 \(T\) .
- 为了满足每个点只能选一种动物,从 \(S\) 向每个点 \(i\) 连权值为 \(a_i\) 的边,从每个点 \(i\) 向 \(T\) 连权值为 \(b_i\) 的边.
- 为了处理三元组 \((i,j,k)\) ,对每个这样的三元组,在 \(i \to j,j\to i\) 都连一条权值为 \(k\) 的边.这样只要两者割的不一样,就还需要割掉中间的这条边.
- 为了处理三元组 \((S,a,b)\) ,新建一个点 \(np\) ,若 \(a=0\) , 就从 \(S\) 向 \(np\) 连一条权值为 \(b\) 的边,从 \(np\) 向 \(\forall i\in S\) 连一条权值为 \(inf\) 的边.这样要么割掉这个收益 \(b\) ,要么就全部割羊的边,即全选牛.
- \(a=1\) 同理,从 \(np\) 向 \(T\) 连一条权值为 \(b\) 的边,从 \(\forall i\in S\) 向 \(np\) 连一条权值为 \(inf\) 的边.
- 建出图后跑一跑最小割,用 \(ans\) 减去它即得答案.
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 1e18
inline ll read()
{
ll out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
fh=-1,jp=getchar();
while (jp>='0'&&jp<='9')
out=out*10+jp-'0',jp=getchar();
return out*fh;
}
const int MAXN=1e6+10;
int cnt=-1,head[MAXN],nx[MAXN],to[MAXN];
ll flow[MAXN];
void addedge(int u,int v,ll Flow)
{
++cnt;
to[cnt]=v;
nx[cnt]=head[u];
flow[cnt]=Flow;
head[u]=cnt;
}
void ins(int u,int v,ll Flow)
{
addedge(u,v,Flow);
addedge(v,u,0);
}
int tot=0;
int cur[MAXN],dep[MAXN];
ll maxflow=0;
bool bfs(int S,int T)
{
for(int i=1;i<=tot;++i)
dep[i]=-1;
for(int i=1;i<=tot;++i)
cur[i]=head[i];
dep[S]=0;
queue<int> q;
q.push(S);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=nx[i])
{
int v=to[i];
if(flow[i] && dep[v]==-1)
{
dep[v]=dep[u]+1;
q.push(v);
}
}
}
if(dep[T]==-1)
return false;
return true;
}
ll dfs(int u,int t,ll limit)
{
if(!limit || u==t)
return limit;
ll Flow=0,f;
for(int i=cur[u];i!=-1;i=nx[i])
{
cur[u]=i;
int v=to[i];
if(dep[v]==dep[u]+1 && (f=dfs(v,t,min(limit,flow[i]))))
{
Flow+=f;
limit-=f;
flow[i]-=f;
flow[i^1]+=f;
if(!limit)
break;
}
}
return Flow;
}
void Dinic(int S,int T)
{
while(bfs(S,T))
maxflow+=dfs(S,T,inf);
}
int n,m,k;
int field[MAXN];
int main()
{
freopen("work.in","r",stdin);
freopen("work.out","w",stdout);
memset(head,-1,sizeof head);
int S=++tot;
int T=++tot;
n=read(),m=read(),k=read();
ll ans=0;
for(int i=1;i<=n;++i)
{
field[i]=++tot;
ll a=read();
ins(S,field[i],a);
ans+=a;
}
for(int i=1;i<=n;++i)
{
ll b=read();
ins(field[i],T,b);
ans+=b;
}
while(m--)
{
int i=read(),j=read();
ll w=read();
ins(field[i],field[j],w);
ins(field[j],field[i],w);
}
while(k--)
{
int t=read(),a=read();
ll b=read();
ans+=b;
int np=++tot;
if(a==0)
{
ins(S,np,b);
for(int i=1;i<=t;++i)
{
int x=read();
ins(np,field[x],inf);
}
}
else
{
ins(np,T,b);
for(int i=1;i<=t;++i)
{
int x=read();
ins(field[x],np,inf);
}
}
}
Dinic(S,T);
ans-=maxflow;
cout<<ans<<endl;
return 0;
}
bzoj 4177 Mike的农场的更多相关文章
- BZOJ 4177: Mike的农场( 最小割 )
显然是最小割... 对于规律(i, j, k) i,j 互相连边, 容量为k 对于规则(S, a, b) 新建一个点x, x与S中每个点连一条弧, 容量+∞, 然后再根据a决定x与源点或汇点连边. 跑 ...
- bzoj4177: Mike的农场
类似于最大权闭合图的思想. #include<cstdio> #include<cstring> #include<iostream> #include<al ...
- 【BZOJ4177】Mike的农场 最小割
[BZOJ4177]Mike的农场 Description Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中 ...
- Mike的农场 (BZOJ 4177)
题目大意: 给N个东西分AB类,分到A类和B类分别得到相应的钱记为A[i],B[i],然后有一些冲突关系<x,y,z>,如果物品x,y不同类需要付出z的钱.还有一些外快<S,x,y& ...
- 【bzoj4177】Mike的农场 网络流最小割
题目描述 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i] ...
- Mike的农场
题目 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i]元, ...
- bzoj:2018 [Usaco2009 Nov]农场技艺大赛
Description Input 第1行:10个空格分开的整数: N, a, b, c, d, e, f, g, h, M Output 第1行:满足总重量最轻,且用度之和最大的N头奶牛的总体重模M ...
- Mike的农场 BZOJ4177
分析: 最小割,不选则割的建模题...(然而一开始我当成了费用流,简直丧心病狂...最后想到了最小割...) 对于条件一,直接建一条双向边就可以了,并且不计入sum中,因为这是作为费用的存在,让它跑出 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
随机推荐
- Java多态 父类引用指向子类对象
Java多态的三个必要条件: 1. 继承 2. 子类重写父类方法 3. 父类引用指向子类对象 然后看一个例子 输出结果为: 给出结论:Father c = new Child() 在c的 ...
- Debian更新软件源提示There is no public key available for the following key IDs的解决方法
今天装了的debian7.0 但是更新软件源的时候出错 提示 W: There is no public key available for the following key IDs: 9D6D8F ...
- 5.5 Components -- Customizing A Compnent's Element
一.概述 默认的,每一个组件都基于一个<div>元素.如果你在开发者工具中查看一个渲染的组件,你将会看到一个像这样的DOM表示: <div id="ember180&quo ...
- cocos2dx 3.x 区域画图
.h文件 bool onTouchBegan(cocos2d::Touch *pTouch, cocos2d::Event *pEvent); void onTouchMoved(cocos2d::T ...
- SecureCRT 会话空闲时超时退出处理
参考文章:http://www.cnblogs.com/xuxm2007/archive/2011/04/21/2023611.html http://yunwei.blog.51cto.com/38 ...
- c++第二十三天
p124~p126: 算数运算符 1.形如+ -(一元) * / % + -(二元)为算数运算符. 2.所有算数运算符都满足左结合律. 3.算数运算符的运算对象和求值结果都是右值. 4.在表达式求值之 ...
- Python3.6(windows系统)安装pip.whl
Python3.6(windows系统)安装pip.whl 1,下载whl文件:https://pypi.python.org/pypi/pip#downloads 2,将下载的文件放入Python的 ...
- Ubuntu 安装zookeeper
下载zookeeper Zookeeper下载 下载以后将文件迁移到/home/Hadoop/文件夹下面 hongdada@ubuntu:~/Downloads$ sudo mv zookeepe ...
- 【同步时间】Linux设置时间同步
所有节点都要确保已安装ntpd(在步骤4已安装) 1.首先选择一台服务器作为时间服务器. 假设选定为node1.sunny.cn服务器为时间服务器. 2.ntp服务器的配置 修改ntp.conf文件: ...
- UVa 10375 选择与除法(唯一分解定理)
https://vjudge.net/problem/UVA-10375 题意: 输入整数p,q,r,s,计算C(p,q)/C(r,s). 思路: 先打个素数表,然后用一个数组e来保存每个素数所对应的 ...