169. Majority Element

Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times.

You may assume that the array is non-empty and the majority element always exist in the array.

Credits:
Special thanks to @ts for adding this problem and creating all test cases.

public class Solution {
public int majorityElement(int[] nums) {
int candidate = 0;
int count = 0;
for (int num : nums) {
if (count == 0) {
candidate = num;
count = 1;
} else if (candidate == num) {
count++;
} else {
count--;
}
}
return candidate;
}
}

229. Majority Element II

Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorithm should run in linear time and in O(1) space.

Hint:

  1. How many majority elements could it possibly have?

Do you have a better hint? Suggest it!

public class Solution {
public List<Integer> majorityElement(int[] nums) {
int candidate1 = 0, candidate2 = 0;
int count1 = 0, count2 = 0;
for (int num : nums) {
if (candidate1 == num) {
count1++;
} else if (candidate2 == num) {
count2++;
} else if (count1 == 0) {
candidate1 = num;
count1 = 1;
} else if (count2 == 0) {
candidate2 = num;
count2 = 1;
} else {
count1--;
count2--;
}
}
List<Integer> result = new ArrayList<Integer>();
int length = nums.length;
/*
if (count1 == 0 && count2 == 0) {
return result;
} else if (count1 > 0 && count2 == 0) {
result.add(candidate1);
return result;
} else if (count2 > 0 && count1 == 0) {
result.add(candidate2);
return result;
}*/
count1 = 0;
count2 = 0;
for (int num : nums) {
if (num == candidate1) {
count1++;
} else if (num == candidate2) {
count2++;
}
}
if (count1 > length / 3) {
result.add(candidate1);
}
if (count2 > length / 3) {
result.add(candidate2);
}
return result;
}
}

254. Factor Combinations

Numbers can be regarded as product of its factors. For example,

8 = 2 x 2 x 2;
= 2 x 4.

Write a function that takes an integer n and return all possible combinations of its factors.

Note:

  1. You may assume that n is always positive.
  2. Factors should be greater than 1 and less than n.

Examples: 
input: 1
output:

[]

input: 37
output:

[]

input: 12
output:

[
[2, 6],
[2, 2, 3],
[3, 4]
]

input: 32
output:

[
[2, 16],
[2, 2, 8],
[2, 2, 2, 4],
[2, 2, 2, 2, 2],
[2, 4, 4],
[4, 8]
]
public class Solution {
public List<List<Integer>> getFactors(int n) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
List<Integer> rList = new ArrayList<Integer>();
if (n < 2) {
return result;
}
helper(n, 2, rList, result);
//System.out.println(result.toString());
return result;
}
private void helper(int n, int start, List<Integer> rList, List<List<Integer>> result) {
int size = rList.size();
int limit = (int)(Math.floor(Math.sqrt(n)));
boolean flag = false;
for (int i = start; i <= limit; i++) {
if (n % i == 0) {
flag = true;
rList.add(i);
helper(n / i, i, rList, result);
rList.remove(size);
}
}
List<Integer> newList = new ArrayList<Integer>(rList);
if (!rList.isEmpty()) {
newList.add(n);
result.add(newList);
}
}
}

258. Add Digits

Given a non-negative integer num, repeatedly add all its digits until the result has only one digit.

For example:

Given num = 38, the process is like: 3 + 8 = 111 + 1 = 2. Since 2 has only one digit, return it.

Follow up:
Could you do it without any loop/recursion in O(1) runtime?

Hint:

    1. A naive implementation of the above process is trivial. Could you come up with other methods?
    2. What are all the possible results?
    3. How do they occur, periodically or randomly?
    4. You may find this Wikipedia article useful.
public class Solution {
public int addDigits(int num) {
if (num == 0) {
return 0;
}
return num - 9 * ((num - 1) / 9);
}
}

264. Ugly Number II

Write a program to find the n-th ugly number.

Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. For example, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 is the sequence of the first 10 ugly numbers.

Note that 1 is typically treated as an ugly number.

Hint:

  1. The naive approach is to call isUgly for every number until you reach the nth one. Most numbers are not ugly. Try to focus your effort on generating only the ugly ones.
  2. An ugly number must be multiplied by either 2, 3, or 5 from a smaller ugly number.
  3. The key is how to maintain the order of the ugly numbers. Try a similar approach of merging from three sorted lists: L1, L2, and L3.
  4. Assume you have Uk, the kth ugly number. Then Uk+1 must be Min(L1 * 2, L2 * 3, L3 * 5).
public class Solution {
public int nthUglyNumber(int n) {
int[] result = new int[n];
int c1 = 0, c2 = 0, c3 = 0;
result[0] = 1;
for (int i = 1; i < n; i++) {
int x1 = result[c1] * 2;
int x2 = result[c2] * 3;
int x3 = result[c3] * 5;
int x = Math.min(x1, x2);
x = Math.min(x, x3);
result[i] = x;
if (x == x1) c1++;
if (x == x2) c2++;
if (x == x3) c3++;
}
return result[n - 1];
}
}

277. Find the Celebrity

Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist one celebrity. The definition of a celebrity is that all the other n - 1 people know him/her but he/she does not know any of them.

Now you want to find out who the celebrity is or verify that there is not one. The only thing you are allowed to do is to ask questions like: "Hi, A. Do you know B?" to get information of whether A knows B. You need to find out the celebrity (or verify there is not one) by asking as few questions as possible (in the asymptotic sense).

You are given a helper function bool knows(a, b) which tells you whether A knows B. Implement a function int findCelebrity(n), your function should minimize the number of calls to knows.

Note: There will be exactly one celebrity if he/she is in the party. Return the celebrity's label if there is a celebrity in the party. If there is no celebrity, return -1.

/* The knows API is defined in the parent class Relation.
boolean knows(int a, int b); */ public class Solution extends Relation {
public int findCelebrity(int n) {
int start = 0;
int end = n - 1;
while (start < end) {
if (knows(start, end)) {
start++;
} else {
end--;
}
}
for (int i = 0; i < start; i++) {
if (!knows(i, start) || knows(start, i)) {
return -1;
}
}
for (int i = start + 1; i < n; i++) {
if (!knows(i, start) || knows(start, i)) {
return -1;
}
}
return start;
}
}

279. Perfect Squares

Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.

For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.

public class Solution {
public int numSquares(int n) {
while(n % 4 == 0){
n = n / 4;
}
if(n % 8 == 7){
return 4;
}
int limit = (int)Math.floor(Math.sqrt(n));
int tmp = n - limit * limit;
if(tmp == 0){
return 1;
}
for(int i = 1; i <= limit; i++){
int remain = n - i * i;
int y = (int)Math.floor(Math.sqrt(remain));
if(remain == y * y){
return 2;
}
}
return 3;
}
}
public class Solution {
public int numSquares(int n) {
int[] store = new int[n + 1];
int limit = (int)Math.floor(Math.sqrt(n));
for(int i = 1; i <= limit; i++){
store[i * i] = 1;
}
for(int i = 0; i <= n; i++){
store[i] = Integer.MAX_VALUE;
}
store[0] = 0;
for(int i = 0; i <= n; i++){
for(int j = 1; i + j * j <= n; j++){
int tmp = i + j * j;
int x = store[i] + 1;
int y = store[tmp];
store[tmp] = x < y ? x : y;
}
}
return store[n];
}
}

292. Nim Game

You are playing the following Nim Game with your friend: There is a heap of stones on the table, each time one of you take turns to remove 1 to 3 stones. The one who removes the last stone will be the winner. You will take the first turn to remove the stones.

Both of you are very clever and have optimal strategies for the game. Write a function to determine whether you can win the game given the number of stones in the heap.

For example, if there are 4 stones in the heap, then you will never win the game: no matter 1, 2, or 3 stones you remove, the last stone will always be removed by your friend.

Hint:

  1. If there are 5 stones in the heap, could you figure out a way to remove the stones such that you will always be the winner?

311. Sparse Matrix Multiplication

Given two sparse matrices A and B, return the result of AB.

You may assume that A's column number is equal to B's row number.

Example:

A = [
[ 1, 0, 0],
[-1, 0, 3]
] B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
] | 1 0 0 | | 7 0 0 | | 7 0 0 |
AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 |
| 0 0 1 |
public class Solution {
public int[][] multiply(int[][] A, int[][] B) {
int m1 = A.length;
int n1 = A[0].length;
int m2 = B.length;
int n2 = B[0].length;
int[][] result = new int[m1][n2];
for (int i = 0; i < m1; i++) {
for (int j = 0; j < n1; j++) {
if (A[i][j] != 0) {
for (int k = 0; k < n2; k++) {
result[i][k] += A[i][j] * B[j][k];
}
}
}
}
return result;
}
}

334. Increasing Triplet Subsequence

Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.

Formally the function should:

Return true if there exists i, j, k 
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.

Your algorithm should run in O(n) time complexity and O(1) space complexity.

Examples:
Given [1, 2, 3, 4, 5],
return true.

Given [5, 4, 3, 2, 1],
return false.

public class Solution {
public boolean increasingTriplet(int[] nums) {
int min1 = Integer.MAX_VALUE;
int min2 = Integer.MAX_VALUE;
for (int num : nums) {
if (num <= min1) {
min1 = num;
} else if (num <= min2) {
min2 = num;
} else {
return true;
}
}
return false;
}
}

386. Lexicographical Numbers

Given an integer n, return 1 - n in lexicographical order.

For example, given 13, return: [1,10,11,12,13,2,3,4,5,6,7,8,9].

Please optimize your algorithm to use less time and space. The input size may be as large as 5,000,000.

public class Solution {
public List<Integer> lexicalOrder(int n) {
List<Integer> result = new ArrayList<Integer>(n);
int x = 1;
for (int i = 0; i < n; i++) {
result.add(x);
if (x * 10 <= n) {
x = x * 10;
} else {
if (x == n) {
x /= 10;
}
x++;
while (x % 10 == 0) {
x /= 10;
}
}
}
return result;
}
}

[leetcode] 数字游戏的更多相关文章

  1. 不一样的猜数字游戏 — leetcode 375. Guess Number Higher or Lower II

    好久没切 leetcode 的题了,静下心来切了道,这道题比较有意思,和大家分享下. 我把它叫做 "不一样的猜数字游戏",我们先来看看传统的猜数字游戏,Guess Number H ...

  2. Java实现 LeetCode 299 猜数字游戏

    299. 猜数字游戏 你正在和你的朋友玩 猜数字(Bulls and Cows)游戏:你写下一个数字让你的朋友猜.每次他猜测后,你给他一个提示,告诉他有多少位数字和确切位置都猜对了(称为"B ...

  3. C语言猜数字游戏

    猜数字游戏,各式各样的实现方式,我这边提供一个实现方式,希望可以帮到新手. 老程序猿就不要看了,黑呵呵 源代码1 include stdio.h include stdlib.h include ti ...

  4. java 猜数字游戏

    作用:猜数字游戏.随机产生1个数字(1~10),大了.小了或者成功后给出提示. 语言:java 工具:eclipse 作者:潇洒鸿图 时间:2016.11.10 >>>>> ...

  5. 【原创Android游戏】--猜数字游戏Version 0.1

    想当年高中时经常和小伙伴在纸上或者黑板上或者学习机上玩猜数字的游戏,在当年那个手机等娱乐设备在我们那还不是很普遍的时候是很好的一个消遣的游戏,去年的时候便写了一个Android版的猜数字游戏,只是当时 ...

  6. 【原创Android游戏】--猜数字游戏V1.1 --数据存储,Intent,SimpleAdapter的学习与应用

    --------------------------------------------------------------- V0.1版本 上次做完第一个版本后,发现还有一些漏洞,并且还有一些可以添 ...

  7. NOIP2003pj数字游戏[环形DP]

    题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...

  8. Codevs 1229 数字游戏

    1229 数字游戏  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 白银 Silver     题目描述 Description Lele 最近上课的时候都很无聊,所以他发明了 ...

  9. codevs 1229 数字游戏(可重集的全排列)

    传送门 Description Lele 最近上课的时候都很无聊,所以他发明了一个数字游戏来打发时间.  这个游戏是这样的,首先,他拿出几张纸片,分别写上0到9之间的任意数字(可重复写某个数字),然后 ...

随机推荐

  1. 2016百度之星 资格赛ABCDE

    看题:http://bestcoder.hdu.edu.cn/contests/contest_show.php?cid=690 交题:http://acm.hdu.edu.cn/search.php ...

  2. MSSQL部分补丁的列表及下载地址(持续更新)

    整理了MSSQL部分补丁的列表及下载地址(截至2016-11-18),供参考下. Edition Version Date Published Download Link SQL Server 201 ...

  3. 关于MySQL的wait_timeout连接超时问题报错解决方案

    bug回顾 : 想必大家在用MySQL时都会遇到连接超时的问题,如下图所示: ### Cause: com.mysql.jdbc.exceptions.jdbc4.CommunicationsExce ...

  4. 解决Myeclipse PermGen space问题

    myeclipse配置web服务器配置 Window—Preferences—Myeclipse—Servers—tomcat JDK的Optional Java VM arguments配置为:-X ...

  5. prototype,__proto__,constructor

    proto属性: 所有对象都有此属性.但它不是规范里定义的属性,并不是所有JavaScript运行环境都支持.它指向对象的原型,也就是你说的继承链里的原型.通过Object.getPrototypeO ...

  6. [从产品角度学EXCEL 02]-EXCEL里的树形结构

    这是<从产品角度学EXCEL>系列第三篇. 前言请看: 0 为什么要关注EXCEL的本质 1 excel是怎样运作的 或者你可以去微信公众号@尾巴说数 获得连载目录. 本文仅由尾巴本人发布 ...

  7. [Machine Learning] logistic函数和softmax函数

    简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用, ...

  8. jQuery动画slideUp()不正常位移原因

    用jQuery写一个列表.当点击底部按钮时,列表中序号超过6的项目可以向下拉出或者向上收起. 用slideUp(),遇见一个问题.展开列表项会产生不正常位移,如下图所示.动画结束发生位移. 出现这个问 ...

  9. Swift3.0P1 语法指南——构造器

    原档:https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programmi ...

  10. EXCEL 2010学习笔记 —— 数据透视表

    今天整理一下EXCEL2010 数据透视表的课程笔记,数据透视表可以对多组数据进行统计和整理,是一种基本的数据可视化工具. 记录6个方面的总结: 1.创建数据透视表 2.更改数据透视表的汇总方式 3. ...