题面

传送门

题解

如果我们把路径拆成两段,那么这个路径加可以看成是一个一次函数

具体来说,设\(dis_u\)表示节点\(u\)到根节点的距离,那么\((x,lca)\)这条路径上每个节点的权值就会加上\(-dis_ua+dis_xa+b\),而\((lca,y)\)这条路径上每个节点就会加上\(dis_ua+a(dis_x+2\times dis_{lca})+b\)

区间加一次函数并维护最值,就是李超线段树啦~~~~

我们把它给树剖了,那么同一条重链里\(dis\)肯定是递增的,我们就可以把插入直线变成插入线段

顺便注意我们的线段树上的节点是离散化之后的,所以在李超线段树计算的时候要用原来的\(dis\)进行计算

树剖一个\(\log\),李超线段树两个\(\log\),总复杂度是\(O(n\log^3n)\)

我很好奇为啥这个复杂度都能跑过去啊……

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define inf 123456789123456789ll
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R ll x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=1e5+5;
struct eg{int v,nx,w;}e[N<<1];int head[N],tot;
inline void add(R int u,R int v,R int w){e[++tot]={v,head[u],w},head[u]=tot;}
ll dis[N],bb,kk;int dfn[N],rk[N],top[N],fa[N],sz[N],son[N],dep[N];
int n,m,cnt;
void dfs1(int u){
dep[u]=dep[fa[u]]+1,sz[u]=1;
go(u)if(v!=fa[u]){
fa[v]=u,dis[v]=dis[u]+e[i].w,dfs1(v),sz[u]+=sz[v];
sz[v]>sz[son[u]]?son[u]=v:0;
}
}
void dfs2(int u,int t){
rk[dfn[u]=++cnt]=u,top[u]=t;
if(!son[u])return;
dfs2(son[u],t);
go(u)if(!top[v])dfs2(v,v);
}
int LCA(R int u,R int v){
while(top[u]!=top[v]){
if(dep[top[u]]<dep[top[v]])swap(u,v);
u=fa[top[u]];
}
return dep[u]<dep[v]?u:v;
}
struct node{
node *lc,*rc;ll b,k,mn,lv,rv;int flag;
inline void ins(R ll bb,R ll kk,R ll l,R ll r){b=bb,k=kk,lv=k*l+b,rv=k*r+b,cmin(mn,lv),cmin(mn,rv),flag=1;}
inline void upd(){cmin(mn,lc->mn),cmin(mn,rc->mn);}
inline ll calc(R ll x){return k*x+b;}
}pool[N<<2],*rt;int num;
inline node *newnode(){return &pool[num++];}
int ql,qr;ll res,k,b;
void build(node* &p,int l,int r){
p=newnode(),p->b=p->mn=p->lv=p->rv=inf,p->k=0;
if(l==r)return;
int mid=(l+r)>>1;
build(p->lc,l,mid),build(p->rc,mid+1,r);
}
void update(node *p,int l,int r,ll b,ll k){
if(ql<=l&&qr>=r){
int mid=(l+r)>>1;
ll dl=dis[rk[l]],dr=dis[rk[r]],dm=dis[rk[mid]];
if(!p->flag)return p->ins(b,k,dl,dr),void();
ll lv=dl*k+b,rv=dr*k+b;
if(lv>=p->lv&&rv>=p->rv)return;
if(lv<p->lv&&rv<p->rv)return p->ins(b,k,dl,dr),void();
double x=1.0*(b-p->b)/(p->k-k);
if(lv<=p->lv){
if(x<=dm)update(p->lc,l,mid,b,k);
else bb=p->b,kk=p->k,p->ins(b,k,dl,dr),update(p->rc,mid+1,r,bb,kk);
}else{
if(x<=dm)bb=p->b,kk=p->k,p->ins(b,k,dl,dr),update(p->lc,l,mid,bb,kk);
else update(p->rc,mid+1,r,b,k);
}
p->upd();
return;
}
int mid=(l+r)>>1;
if(ql<=mid)update(p->lc,l,mid,b,k);
if(qr>mid)update(p->rc,mid+1,r,b,k);
p->upd();
}
void query(node *p,int l,int r){
if(ql<=l&&qr>=r)return cmin(res,p->mn),void();
cmin(res,p->calc(dis[rk[max(l,ql)]])),
cmin(res,p->calc(dis[rk[min(r,qr)]]));
int mid=(l+r)>>1;
if(ql<=mid)query(p->lc,l,mid);
if(qr>mid)query(p->rc,mid+1,r);
}
void change(int u,int v){
while(top[u]!=top[v]){
ql=dfn[top[u]],qr=dfn[u],
update(rt,1,n,b,k),
u=fa[top[u]];
}
ql=dfn[v],qr=dfn[u],update(rt,1,n,b,k);
}
void ask(int u,int v){
res=inf;
while(top[u]!=top[v]){
if(dep[top[u]]<dep[top[v]])swap(u,v);
ql=dfn[top[u]],qr=dfn[u],query(rt,1,n),
u=fa[top[u]];
}
if(dep[u]<dep[v])swap(u,v);
ql=dfn[v],qr=dfn[u],query(rt,1,n);
print(res);
}
int op,u,v,A,B,lca;
signed main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
for(R int i=1,u,v,w;i<n;++i)u=read(),v=read(),w=read(),add(u,v,w),add(v,u,w);
dfs1(1),dfs2(1,1),build(rt,1,n);
while(m--){
op=read(),u=read(),v=read();
if(op==2)ask(u,v);
else{
lca=LCA(u,v),A=read(),B=read();
b=dis[u]*A+B,k=-A,change(u,lca);
b=(dis[u]-(dis[lca]<<1))*A+B,k=A,change(v,lca);
}
}
return Ot(),0;
}

洛谷P4069 [SDOI2016]游戏(李超线段树)的更多相关文章

  1. 洛谷P4069 [SDOI2016]游戏(李超线段树)

    题意 题目链接 Sol 这题细节好多啊qwq..稍不留神写出一个小bug就要调1h+.. 思路就不多说了,把询问区间拆成两段就是李超线段树板子题了. 关于dis的问题可以直接维护. // luogu- ...

  2. 【洛谷P4097】Segment 李超线段树

    题目大意:维护一个二维平面,给定若干条线段,支持询问任意整数横坐标处对应的纵坐标最靠上的线段的 id,相同高度取 id 值较小的,强制在线. 题解:初步学习了李超线段树.李超线段树的核心思想在于通过标 ...

  3. 洛谷 P3373 【模板】线段树 2

    洛谷 P3373 [模板]线段树 2 洛谷传送门 题目描述 如题,已知一个数列,你需要进行下面三种操作: 将某区间每一个数乘上 xx 将某区间每一个数加上 xx 求出某区间每一个数的和 输入格式 第一 ...

  4. 【BZOJ-4515】游戏 李超线段树 + 树链剖分 + 半平面交

    4515: [Sdoi2016]游戏 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 304  Solved: 129[Submit][Status][ ...

  5. 洛谷 P2574 XOR的艺术(线段树 区间异或 区间求和)

    To 洛谷.2574 XOR的艺术 题目描述 AKN觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏.在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下 1. 拥有一个伤害串为长度为n的 ...

  6. 洛谷P3372 【模板】线段树 1

    P3372 [模板]线段树 1 153通过 525提交 题目提供者HansBug 标签 难度普及+/提高 提交  讨论  题解 最新讨论 [模板]线段树1(AAAAAAAAA- [模板]线段树1 洛谷 ...

  7. 洛谷P4891 序列(势能线段树)

    洛谷题目传送门 闲话 考场上一眼看出这是个毒瘤线段树准备杠题,发现实在太难调了,被各路神犇虐哭qwq 考后看到各种优雅的暴力AC......宝宝心里苦qwq 思路分析 题面里面是一堆乱七八糟的限制和性 ...

  8. 洛谷P4344 脑洞治疗仪 [SHOI2015] 线段树+二分答案/分块

    !!!一道巨恶心的数据结构题,做完当场爆炸:) 首先,如果你用位运算的时候不小心<<打成>>了,你就可以像我一样陷入疯狂的死循环改半个小时 然后,如果你改出来之后忘记把陷入死循 ...

  9. Bzoj5294/洛谷P4428 [Bjoi2018]二进制(线段树)

    题面 Bzoj 洛谷 题解 考虑一个什么样的区间满足重组之后可以变成\(3\)的倍数.不妨设\(tot\)为一个区间内\(1\)的个数.如果\(tot\)是个偶数,则这个区间一定是\(3\)的倍数,接 ...

随机推荐

  1. ORACLE BI Publisher Enterprise

    二.带参数 BEGIN:{$FIRST_DAY_OF_MONTH()$} END:{$SYSDATE()$} 三\加下拉菜单值

  2. 南京大学发布无序列限制的DNA编辑新工具(转自生物通)

    编辑推荐: 内切酶经过改造可以成为强大的DNA编辑工具,比如ZFN.TALEN.风头正劲的CRISPR–Cas系统和充满争议的NgAgo技术.不过这些技术都是通过序列识别来实现靶向切割的,会受到序列偏 ...

  3. Liunx下如何使用kettle

    在windows下完成所有操作, 把xxx.ktr上传到liunx, Pan.sh xxx.ktr 就完成了

  4. static 与 extern 关键字描述说明

    使用static 定义的变量和函数只能用于本模块即为本文件 使用extern 定义的变量和函数可以用于其他模块的引用

  5. Mybatis之整体描述

    Mybatis在我看来最大的用处就是封装了jdbc,设置参数操作和获取解析结果集.同时控制了数据库链接等操作,大部分采用了反射来映射javabean对象来进行数据库操作. 1.接下来先整体介绍下主要的 ...

  6. R语言中 fitted()和predict()的区别

    fitted是拟合值,predict是预测值.模型是基于给定样本的值建立的,在这些给定样本上做预测就是拟合.在新样本上做预测就是预测. 你可以找一组数据试试,结果如何. fit<-lm(weig ...

  7. HTML5 桌面消息提醒

    Notification HTML5新属性,复制代码创建HTML文件,浏览器查看效果 <!DOCTYPE html> <html lang="en"> &l ...

  8. Hadoop中Comparator原理

    在前面的博文<Hadoop中WritableComparable 和 comparator>中,对于WritableComparator说的不够细致,下面说说具体的实现原理! 1.Writ ...

  9. github push403错误的处理

    如果没有什么别的问题的话,推荐使用SSH的方式.请参考:http://stackoverflow.com/questions/7438313/pushing-to-git-returning-erro ...

  10. python使用smtplib和email发送腾讯企业邮箱邮件

    公司每天要发送日报,最近没事搞了一下如何自动发邮件,用的是腾讯企业邮箱,跟大家分享一下我的研究过程吧. 以前弄的发邮件的是用qq邮箱发的,当时在网上查资料最后达到了能发图片,网页,自定义收件人展示,主 ...