1、独立与不相关

随机变量X和Y相互独立,有:E(XY) = E(X)E(Y)。

独立一定不相关,不相关不一定独立(高斯过程里二者等价) 。对于均值为零的高斯随机变量,“独立”和“不相关”等价的。

独立性是指两个变量的发生概率一点关系没有,而相关性通常是指线性关系。如果两个变量不相关,指的是线性关系里不相关,但是不能说它们没有关系,可能是线性以外的其他关系。

2、中心极限定理和强、弱大数定律

中心极限定理和强、弱大数定律是概率论的核心,历史悠久(不晚于1733年)。

大数定律讲的是样本均值收敛到总体均值(就是期望)。即如果统计数据足够大,那么事物出现的频率就能无限接近他的期望值。

小数定律是说,如果统计数据很少,那么事件就表现为各种极端情况,而这些情况都是偶然事件,跟它的期望值一点关系都没有。

中心极限定理告诉我们:大量独立同分布随机变量之和满足高斯分布,即当样本量足够大时,样本均值的分布慢慢变成正态分布。

即样本的平均值约等于总体的平均值。不管总体是什么分布,任意一个总体的样本平均值都会围绕在总体的整体平均值周围,并且呈正态分布。

中心极限定理有很多版本,最常见的版本要求(或假设)所有样本独立同分布,且他们共同服从的分布存在前两阶原点矩。

大数定律成立的条件比中心极限定理宽松,前者只需要一阶矩存在,而后者需要前两阶矩都存在。大数定律成立的条件比中心极限定理宽松,前者只需要一阶矩存在,而后者需要前两阶矩都存在。因为条件更强,中心极限定理的结论也更强,大数定律只是证明几乎处处收敛,却没有指明收敛的速度,而中心极限定理给出了收敛的极限分布和渐近方差。

Tips on Probability Theory的更多相关文章

  1. 一起啃PRML - 1.2 Probability Theory 概率论

    一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...

  2. Codeforces Round #594 (Div. 1) A. Ivan the Fool and the Probability Theory 动态规划

    A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and stu ...

  3. 【PRML读书笔记-Chapter1-Introduction】1.2 Probability Theory

    一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉. ...

  4. [PR & ML 3] [Introduction] Probability Theory

    虽然学过Machine Learning和Probability今天看着一part的时候还是感觉挺有趣,听惊呆的,尤其是Bayesian Approach.奇怪发中文的笔记就很多人看,英文就没有了,其 ...

  5. Probability theory

    1.Probability mass functions (pmf) and Probability density functions (pdf) pmf 和 pdf 类似,但不同之处在于所适用的分 ...

  6. 概率论基础知识(Probability Theory)

    概率(Probability):事件发生的可能性的数值度量. 组合(Combination):从n项中选取r项的组合数,不考虑排列顺序.组合计数法则:. 排列(Permutation):从n项中选取r ...

  7. P1-概率论基础(Primer on Probability Theory)

    2.1概率密度函数 2.1.1定义 设p(x)为随机变量x在区间[a,b]的概率密度函数,p(x)是一个非负函数,且满足 注意概率与概率密度函数的区别. 概率是在概率密度函数下对应区域的面积,如上图右 ...

  8. CF1239A Ivan the Fool and the Probability Theory

    思路: 可以转化为“strip”(http://tech-queries.blogspot.com/2011/07/fit-12-dominos-in-2n-strip.html)问题.参考了http ...

  9. CF C.Ivan the Fool and the Probability Theory【思维·构造】

    题目传送门 题目大意: 一个$n*m$的网格图,每个格子可以染黑色.白色,问每个格子最多有一个相邻格子颜色相同的涂色方案数$n,m<=1e5$ 分析: 首先,考虑到如果有两个相邻的格子颜色相同, ...

随机推荐

  1. 嵌入式02 STM32 实验07 串口通信

    STM32串口通信(F1系列包含3个USART和2个UART) 一.单片机与PC机串行通信研究目的和意义: 单片机自诞生以来以其性能稳定,价格低廉.功能强大.在智能仪器.工业装备以及日用电子消费产品中 ...

  2. Python使用队列实现Josephus问题

    Josephus问题,在这个古老的问题中,N个深陷绝境的人一致同意通过以下方式减少生存的人数.他们围坐一圈(位置记为0~N-1)并从第一个人报数,报到M的人会被杀死, 知道最后一个人留下来.传说中Jo ...

  3. 收藏单词TOEFL备份托福英语

    TOEFL托福词汇串讲(文本) alchemy(chem-化学)n. 炼金术 chemistry 化学 alder 赤杨树 联想:older 老人坐在赤杨树下 sloth 树懒 algae n.海藻 ...

  4. 在O(1)的时间内删除链表节点

    题目: 在O(1)的时间内删除链表节点.给定链表的头指针和待删除的节点指针,定义一个函数在O(1)的时间内删除该节点. 剑指offer的思路,顿时觉得极妙.删除节点node1,先把其下一个节点node ...

  5. Js判断对象是否是数组的方法

    1.ECMAScript5中有一个现成的方法:Array.isArray(). var obj = {1:[1],2:[2]}, arr = [1], str = "1"; Arr ...

  6. jquery实现弹出层完美居中效果

    代码如下: showDiv($("#pop"));function showDiv(obj){ $(obj).show(); center(obj); $(window).scro ...

  7. 部署GitLab时, 问题

    1. 开启防火墙可能会对 nginx 造成影响. 2. 安装 gitlab 会自带一个 nginx, 启动后会对 现有的nginx 造成影响, 解决方案 参考    连接 1

  8. C#-NLog记录日志

    Nuget获取包 配置文件 <?xml version="1.0" encoding="utf-8" ?> <nlog xmlns= &quo ...

  9. java验证邮件正则

    这里,本人从commons-validator包中源码,拷出部分内容,如下: private static final String EMAIL_REGEX = "^\\s*?(.+)@(. ...

  10. 前端cdn库推荐

    后端编程人员,有时作功能调试时会用到jquery.layer等的前端库文件,用得较多的我们可以下载下来放到自己的电脑上,有些偶尔使用一次的类库插件就没必要全都下载下来,毕竟不用的类库多了,自己找到它都 ...