算法思想

我们想求得一组\(x,y\)使得 \(ax+by = \gcd(a,b)\)

根据 \(\gcd(a,b) = \gcd(b,a\bmod b)\)

如果我们现在有\(x',y'\) 使得 \(bx'+(a\bmod b)y' = \gcd(b,a\bmod b)\)

那么

$ax+by = bx'+( a-\lfloor\frac a b\rfloor b)y'$

移项之后

\(ax+by = ay'+b(x'-\lfloor\frac a b\rfloor y')\)

我们可以得到一组特解
$x = y',y = x' - \lfloor\frac a b\rfloor y'$

递归求解,当\(b = 0\)时候,\(x = 1,y = 0\);

模板

int exgcd(int a,int b,int &x,int &y)
{
if(b==0)
{
x = 1; y = 0;return a;
}
int x1,y1;
int ans = exgcd(b,a%b,x1,y1);
x = y1;
y = x1-(a/b)*y1;
return ans;
}

例题

https://www.luogu.com.cn/problem/P1082

参考博客

https://www.zybuluo.com/samzhang/note/541890

数论--扩展欧几里得exgcd的更多相关文章

  1. interesting Integers(数学暴力||数论扩展欧几里得)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwwAAAHwCAIAAACE0n9nAAAgAElEQVR4nOydfUBT1f/Hbw9202m0r8

  2. 同余问题(一)——扩展欧几里得exgcd

    前言 扩展欧几里得算法是一个很好的解决同余问题的算法,非常实用. 欧几里得算法 简介 欧几里得算法,又称辗转相除法. 主要用途 求最大公因数\(gcd\). 公式 \(gcd(a,b)=gcd(b,a ...

  3. 浅谈扩展欧几里得[exgcd] By cellur925

    关于扩展欧几里得从寒假时就很迷,抄题解过了同余方程,但是原理并不理解. 今天终于把坑填上了qwq. 由于本人太菜,不会用markdown,所以这篇总结是手写的(什么).(字丑不要嫌弃嘛) ****** ...

  4. 扩展欧几里得(exgcd)与同余详解

    exgcd入门以及同余基础 gcd,欧几里得的智慧结晶,信息竞赛的重要算法,数论的...(编不下去了 讲exgcd之前,我们先普及一下同余的性质: 若,那么 若,,且p1,p2互质, 有了这三个式子, ...

  5. 扩展欧几里得(exgcd)-求解不定方程/求逆元

    贝祖定理:即如果a.b是整数,那么一定存在整数x.y使得ax+by=gcd(a,b).换句话说,如果ax+by=m有解,那么m一定是gcd(a,b)的若干倍.(可以来判断一个这样的式子有没有解)有一个 ...

  6. 扩展欧几里得 exGCD

    Elementary Number Theory - Extended Euclid Algorithm Time Limit : 1 sec, Memory Limit : 65536 KB Jap ...

  7. [ZLXOI2015]殉国 数论 扩展欧几里得

    题目大意:已知a,b,c,求满足ax+by=c (x>=0,y>=0)的(x+y)最大值与最小值与解的个数. 直接exgcd,求出x,y分别为最小正整数的解,然后一算就出来啦 #inclu ...

  8. 数论 + 扩展欧几里得 - SGU 106. The equation

    The equation Problem's Link Mean: 给你7个数,a,b,c,x1,x2,y1,y2.求满足a*x+b*y=-c的解x满足x1<=x<=x2,y满足y1< ...

  9. 【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions

    题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < ...

随机推荐

  1. 【基于onenet-edp的文件传输】1、调试上报数据点和端对端透传

    onenet-edp上报数据点和端对端透传 一.前言 edp是onenet用于tcp设备定制的一套协议,能够灵活地实现数据上报和透传: 二.准备工作 1.找到edp页面 进入工作台后,找到多协议接入, ...

  2. idea远程部署SpringBoot项目到Docker

    安装docker服务或者系统学习docker参考这篇文档:https://shimo.im/docs/fE0eJCx8IIojQXzB/ 1.配置docker的远程端口 vim /usr/lib/sy ...

  3. Golang ---基准测试

    什么是基准测试 基准测试,是一种测试代码性能的方法,比如你有多种不同的方案,都可以解决问题,那么到底是那种方案性能更好呢?这时候基准测试就派上用场了. 基准测试主要是通过测试CPU和内存的效率问题,来 ...

  4. :阿里巴巴 Java 开发手册 (十一)工程结构

    (一) 应用分层 1. [推荐]图中默认上层依赖于下层,箭头关系表示可直接依赖,如:开放接口层可以依赖于 Web 层,也可以直接依赖于 Service 层,依此类推:  开放接口层:可直接封装 Se ...

  5. linux 压力测试工具之ab

    简介 Apache Benchmark(简称ab) 是Apache安装包中自带的压力测试工具 ,简单易用 在此提供 ab 在 centOS7 下的安装和使用方法注:个人发现,之前安装的centos6. ...

  6. MVC Filter的使用方法

    相信对权限过滤大家伙都不陌生 用户要访问一个页面时 先对其权限进行判断并进行相应的处理动作 在webform中 最直接也是最原始的办法就是 在page_load事件中所有代码之前 先执行一个权限判断的 ...

  7. C++ STL vector类型

    vector容器是一个模板类,可以存放任何类型的对象(但必须是同一类对象).vector对象可以在运行时高效地添加元素,并且vector中元素是连续存储的.注:vector容器内存放的所有对象都是经过 ...

  8. 设计模式-依赖倒置-Dependency Inversion Principle

    依赖倒置原则: 一般来说我们认为作为底层基础框架的逻辑是不应该依赖于上层逻辑的, 所以我们设计软件时也经常是: 需求 - 上层逻辑(直接实现需求) - 发现需要固化的逻辑 - 开发底层模块 - 然后上 ...

  9. php长连接应用

    php长连接和短连接 2012-12-05 17:25 3529人阅读 评论(0) 收藏 举报  分类: 我的收藏(8)  什么是长连接,如果你没听说过,可以往下看! 长连接到底有什么用?我想你应该见 ...

  10. VUE基础回顾6

    1.ref ref可以直接访问元素,而不需要使用querySelector或者其他dom节点的原生方法. <div ref = "box"></div> 在 ...