多项式求逆入门 板题(Luogu P4238)
- 下面是代码,推导详见 传送门
模板Code
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int mod = 998244353, g = 3, MAXN = 1<<18;
typedef long long LL;
inline void change(int arr[], const int &len)
{
register int i, j, k;
for(i = 1, j = len/2; i < len-1; ++i)
{
if(i < j) swap(arr[i], arr[j]);
k = len/2;
while(j >= k) j -= k, k >>= 1;
j += k;
}
}
inline int qmul(int a, int b, const int &c)
{
register int ret = 1;
while(b)
{
if(b&1) ret = (LL)ret * a % c;
a = (LL)a * a % c; b >>= 1;
}
return ret;
}
inline void NTT(int arr[], const int &len, const int &flg)
{
change(arr, len);
register int wn, w, A0, wA1, i, j, k;
for(i = 2; i <= len; i <<= 1)
{
if(~flg) wn = qmul(g, (mod-1)/i, mod);
else wn = qmul(g, (mod-1) - (mod-1)/i, mod);
for(j = 0; j < len; j += i)
{
w = 1;
for(k = j; k < j + i/2; ++k)
{
A0 = arr[k], wA1 = (LL)w * arr[k + i/2]% mod;
arr[k] = (A0 + wA1) % mod;
arr[k + i/2] = ((A0 - wA1) % mod + mod) % mod;
w = (LL)w * wn % mod;
}
}
}
if(flg == -1)
{
register int rev = qmul(len, mod-2, mod);
for(i = 0; i < len; ++i)
arr[i] = (LL)arr[i] * rev % mod;
}
}
int a[MAXN], b[MAXN], c[MAXN];
void work(const int °, int a[], int b[])
{
if(deg == 1) { b[0] = qmul(a[0], mod-2, mod); return; }
work(deg+1>>1, a, b);
register int len = 1;
while(len < deg<<1) len <<= 1;
for(int i = 0; i < deg; ++i) c[i] = a[i];
for(int i = deg; i < len; ++i) c[i] = 0;
NTT(c, len, 1); NTT(b, len, 1);
for(int i = 0; i < len; ++i)
b[i] = (2 - (LL)b[i]*c[i]%mod + mod) % mod * b[i] % mod;
NTT(b, len, -1);
for(int i = deg; i < len; ++i) b[i] = 0;
}
int n;
void init()
{
scanf("%d", &n);
for(int i = 0; i < n; ++i)
scanf("%d", &a[i]);
}
void solve()
{
work(n, a, b);
for(int i = 0; i < n; ++i)
printf("%d%c", b[i], i == n-1 ? '\n' : ' ');
}
int main ()
{
init(); solve();
}
多项式求逆入门 板题(Luogu P4238)的更多相关文章
- luogu P4725 多项式对数函数 (模板题、FFT、多项式求逆、求导和积分)
手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: ht ...
- 洛谷P4238【模板】多项式求逆
洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...
- 2018.12.30 洛谷P4238 【模板】多项式求逆
传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...
- [模板][P4238]多项式求逆
NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...
- P4238 【模板】多项式求逆
思路 多项式求逆就是对于一个多项式\(A(x)\),求一个多项式\(B(x)\),使得\(A(x)B(x) \equiv 1 \ (mod x^n)\) 假设现在多项式只有一项,显然\(B(x)\)的 ...
- [洛谷P4238]【模板】多项式求逆
题目大意:多项式求逆 题解:$ A^{-1}(x) = (2 - B(x) * A(x)) \times B(x) \pmod{x^n} $ ($B(x)$ 为$A(x)$在$x^{\lceil \d ...
- hdu 5730 Shell Necklace [分治fft | 多项式求逆]
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...
- NTT+多项式求逆+多项式开方(BZOJ3625)
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...
- BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)
题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...
随机推荐
- MySQL单机优化---分表、分区、分库
一.分表: 水平分表:根据条件把数据分为N个表(例如:商品表中有月份列,则可以按月份进行水平分表). 使用场景:一张表中数据太多,查询效率太慢. 当需要同时查询被水平分表的多张表时: 在两条SQL语句 ...
- 手撕面试官系列(十):面试必备之常问Dubbo29题+MySQL55题
Dubbo专题 (面试题+答案领取方式见侧边栏) 1.Dubbo 支持哪些协议,每种协议的应用场景,优缺点?2.Dubbo 超时时间怎样设置?3.Dubbo 有些哪些注册中心?4.Dubbo 集群的负 ...
- 修改Jupyter Notebook的默认打开路径
一: (也可以直接将删除的部分修改成所要存储的文件路径,之后三个步骤就可以省去了) 二: 打开Windows的cmd,在cmd中输入jupyter notebook --generate-config ...
- php开发工程师都需要掌握什么技能呢?
PHP原生标准库精通,三种大型框架中熟练掌握一门的开发(Symfony2.Yii.ZF2),小型框架中(Codeigniter 等)通读其一源码. MySQL语句精通,实践构造 1000 万级的数据库 ...
- 文件包含lfi
CG-CTF web(文件包含漏洞) 参考链接:https://blog.csdn.net/qq_34072526/article/details/89431431 php://filter 的使用: ...
- Netty源码分析之NioEventLoop(三)—NioEventLoop的执行
前面两篇文章Netty源码分析之NioEventLoop(一)—NioEventLoop的创建与Netty源码分析之NioEventLoop(二)—NioEventLoop的启动中我们对NioEven ...
- RabbitMQ Policy的使用
RabbitMQ作为最流行的MQ中间件之一,广泛使用在各类系统中,今天我们就来讨论一下如何通过Policies给RabbitMQ中已经创建的Queue添加属性和参数. Policise 的作用 通常来 ...
- C#设计模式之12:中介者模式
中介者模式 在asp.net core中实现进程内的CQRS时用mediatR是非常方便的,定义command,然后定义commandhandler,或者notification和notificati ...
- XXL-JOB使用命令行的方式启动python时,日志过多导致阻塞的解决方式
一.Runtime.getRuntime().exec()的阻塞问题 这个问题也不能算是XXL-JOB的问题,而是Java的Runtime.getRuntime().exec()造成的,Buffere ...
- Tornado + Bootstrap 快速搭建自己的web应用
前言 最近用 python tordado 框架, 整了一个模板页面, 用于接入与发布数据的展示, tornado 简单易用, bootstrap 比较流行, 用起来也省事, 配合起来做些小案例非常迅 ...