一、re模块的基本使用

Python里数量词默认是贪婪的,总是尝试匹配尽可能多的字符。正则表达式是用来匹配处理字符串的。

假如你需要匹配文本中的字符\,Python里的使用原生字符串表示:r'\\'表示。同样,匹配一个数字的\\d可以写成r'\d'

1、python 中使用正则表达式需要引入re模块

import re  # 第一步,要引入re模块
a = re.findall("匹配规则", "这个字符串是否有匹配规则的字符") # 第二步,调用模块函数
print(a) # 以列表形式返回匹配到的字符串
# ['匹配规则']

2、常见元字符

  • ^元字符:匹配字符串开头。
  • $元字符:匹配字符串末尾。
  • *元字符:匹配前一个字符0或多次
  • +元字符:匹配前一个字符1次或无限次
  • ?元字符(防止贪婪匹配):匹配一个字符0次或1次:
    还有一个功能是在量词后面加上?号防止贪婪匹配 。
  • {}元字符(范围):自定义字符数
    {m}匹配前一个字符m次,
    {m,n}匹配前一个字符m至n次,若省略n,则匹配m至无限次
    {0,}匹配前一个字符0或多次,等同于*元字符
    {+,}匹配前一个字符1次或无限次,等同于+元字符
    {0,1}匹配前一个字符0次或1次,等同于?元字符
  • []元字符(字符集):[]里的任意一个字符就匹配字符集。
    字符集中的字符可以逐个列出,也可以给出范围,如[abc]或[a-c]。[^abc]表示取反,即非abc。
    所有特殊字符在字符集中都失去其原有的特殊含义。用\反斜杠转义恢复特殊字符的特殊含义。
  • [^]:反取,匹配出除[^]里面的字符
    ^元字符如果写到字符集里就是反取
  • \d:匹配任何十进制数,它相当于类[0-9]
  • \D:匹配任何非数字字符,它相当于类[^0-9]
  • \s:匹配任何空白字符,它相当于类[\t\n\r\f\v]
  • \S:匹配任何非空白字符,它相当于类[^\t\n\r\f\v]
  • \w:匹配包括下划线在内任何字母数字字符,它相当于类[a-zA-Z0-9_]
  • \W:匹配非任何字母数字字符包括下划线在内,它相当于类[^a-zA-Z0-9_]
  • ()元字符(分组):分组匹配。()里面的为一个组也可以理解成一个整体。
    如果()后面跟的是特殊元字符如 (adc)* 那么*控制的前导字符就是()里的整体内容,不再是前导一个字符。
  • |元字符(或):就是前后其中一个符合就匹配

二、re模块中常用功能函数

1、 正则表达式的两种书写方式

1、一种是直接在函数里书写规则,推荐使用

import re

a = re.findall("匹配规则", "这个字符串是否有匹配规则的字符")
print(a) # ['匹配规则']

2、另一种是先将正则表达式的字符串形式编译为Pattern实例,然后使用Pattern实例处理文本并获得匹配结果(一个Match实例),最后使用Match实例获得信息,进行其他的操作。

re.compile(pattern[, flag])函数:用于将字符串形式的正则表达式编译为Pattern对象

这个方法是Pattern类的工厂方法。 第二个参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。

另外,你也可以直接在pattern字符串中指定模式,比如re.compile('pattern', re.I | re.M)与re.compile('(?im)pattern')是等价的。

import re

# 将正则表达式编译成Pattern对象
pattern = re.compile(r'hello') # 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None
match = pattern.match('hello world!') if match:
# 使用Match获得分组信息
print(match.group()) # hello

2、匹配模式

下表是所有的正则匹配模式:

  • re.I:使匹配对大小写不敏感
  • re.L:做本地化识别(locale-aware)匹配
  • re.M:多行匹配,影响 ^ 和 $
  • re.S:使 . 匹配包括换行在内的所有字符
  • re.U:根据Unicode字符集解析字符。这个标志影响 \w, \W, \b, \B.
  • re.X:该标志通过给予你更灵活的格式以便你将正则表达式写得更易于理解。

1、 re.S:扩展

在Python的正则表达式中,有一个参数为re.S。它表示 “.” 的作用扩展到整个字符串,包括“\n”。看如下代码:

import re

a = '''asdfhellopass:
worldaf
'''
b = re.findall('hello(.*?)world', a)
c = re.findall('hello(.*?)world', a, re.S)
print('b is ', b) # b is []
print('c is ', c) # c is ['pass:\n ']

正则表达式中,“.”的作用是匹配除“\n”以外的任何字符,也就是说,它是在一行中进行匹配。这里的“行”是以“\n”进行区分的。a字符串有每行的末尾有一个“\n”,不过它不可见。

如果不使用re.S参数,则只在每一行内进行匹配,如果一行没有,就换下一行重新开始,不会跨行。而使用re.S参数以后,正则表达式会将这个字符串作为一个整体,将“\n”当做一个普通的字符加入到这个字符串中,在整体中进行匹配。

2、 re.I:不区分大小写

import re

res = re.findall(r"A", "abc", re.I)
print(res)# ['a']

3、 分组函数

?P<n1> :(只对正则函数返回对象时有用)# ?P<>定义组里匹配内容的key(键),<>里面写key名称,值就是匹配到的内容

取出匹配对象三种方法:(只对正则函数返回对象的有用)

  • group() # 获取匹配到的所有结果,不管有没有分组将匹配到的全部拿出来,有参取匹配到的第几个如2
  • groups() # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分的结果
  • groupdict() # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分定义了key的组结果

3、re.match(常用):从头匹配一个符合规则的字符串,从起始位置开始匹配,匹配成功返回一个对象,未匹配成功返回None

match(pattern, string, flags=0)

  • pattern: 正则模型
  • string : 要匹配的字符串
  • falgs : 匹配模式

注意:match()函数 与 search()函数基本是一样的功能,不一样的就是match()匹配字符串开始位置的一个符合规则的字符串,search()是在字符串全局匹配第一个符合规则的字符串

import re

# 无分组
origin = "hello egon bcd egon lge egon acd 19"
r = re.match("h\w+", origin) # match,从起始位置开始匹配,匹配成功返回一个对象,未匹配成功返回None
print(r.group()) # 获取匹配到的所有结果,不管有没有分组将匹配到的全部拿出来
print(r.groups()) # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分的结果
print(r.groupdict()) # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分定义了key的组结果
# hello
# ()
# {} # 有分组
# 为何要有分组?提取匹配成功的指定内容(先匹配成功全部正则,再匹配成功的局部内容提取出来)
r = re.match("h(\w+)", origin) # match,从起始位置开始匹配,匹配成功返回一个对象,未匹配成功返回None
print(r.group()) # 获取匹配到的所有结果,不管有没有分组将匹配到的全部拿出来
print(r.groups()) # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分的结果
print(r.groupdict()) # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分定义了key的组结果
# hello
# ('ello',)
# {} # 有两个分组定义了key
# 为何要有分组?提取匹配成功的指定内容(先匹配成功全部正则,再匹配成功的局部内容提取出来)
# ?P<>定义组里匹配内容的key(键),<>里面写key名称,值就是匹配到的内容
r = re.match("(?P<n1>h)(?P<n2>\w+)", origin)
print(r.group()) # 获取匹配到的所有结果,不管有没有分组将匹配到的全部拿出来
print(r.groups()) # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分的结果
print(r.groupdict()) # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分定义了key的组结果
# hello
# ('h', 'ello')
# {'n1': 'h', 'n2': 'ello'}

4、 re.search(pattern, string[, flags]):浏览整个字符串去匹配第一个符合规则的字符串,未匹配成功返回None

search(pattern, string, flags=0)

  • pattern: 正则模型
  • string : 要匹配的字符串
  • falgs : 匹配模式

注意:match()函数 与 search()函数基本是一样的功能,不一样的就是match()匹配字符串开始位置的一个符合规则的字符串,search()是在字符串全局匹配第一个符合规则的字符串

import re

# 无分组
origin = "hello alex bcd alex lge alex acd 19"
# search浏览全部字符串,匹配第一符合规则的字符串,浏览整个字符串去匹配第一个,未匹配成功返回None
r = re.search("a\w+", origin)
print(r.group() ) # 获取匹配到的所有结果,不管有没有分组将匹配到的全部拿出来
print(r.groups() ) # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分的结果
print(r.groupdict() ) # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分定义了key的组结果
# alex
# ()
# {} # 有分组
# 为何要有分组?提取匹配成功的指定内容(先匹配成功全部正则,再匹配成功的局部内容提取出来)
r = re.search("a(\w+).*(\d)", origin)
print(r.group()) # 获取匹配到的所有结果,不管有没有分组将匹配到的全部拿出来
print(r.groups()) # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分的结果
print(r.groupdict()) # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分定义了key的组结果
# alex bcd alex lge alex acd 19
# ('lex', '9')
# {} # 有两个分组定义了key
# 为何要有分组?提取匹配成功的指定内容(先匹配成功全部正则,再匹配成功的局部内容提取出来)
# ?P<>定义组里匹配内容的key(键),<>里面写key名称,值就是匹配到的内容
r = re.search("a(?P<n1>\w+).*(?P<n2>\d)", origin)
print(r.group()) # 获取匹配到的所有结果,不管有没有分组将匹配到的全部拿出来
print(r.groups()) # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分的结果
print(r.groupdict()) # 获取模型中匹配到的分组结果,只拿出匹配到的字符串中分组部分定义了key的组结果
# alex bcd alex lge alex acd 19
# ('lex', '9')
# {'n1': 'lex', 'n2': '9'}

5、 re.findall()(常用):浏览全部字符串,匹配所有合规则的字符串,匹配到的字符串放到一个列表中,未匹配成功返回空列表

findall(pattern, string, flags=0)

  • pattern: 正则模型
  • string : 要匹配的字符串
  • falgs : 匹配模式

注意:一旦匹配成,再次匹配,是从前一次匹配成功的,后面一位开始的,也可以理解为匹配成功的字符串,不在参与下次匹配。

1、无分组:匹配所有合规则的字符串,匹配到的字符串放到一个列表中

import re
# 无分组
r = re.findall("\d+\w\d+", "a2b3c4d5") # 浏览全部字符串,匹配所有合规则的字符串,匹配到的字符串放到一个列表中
print(r) # 注意:匹配成功的字符串,不在参与下次匹配,所以3c4也符合规则但是没匹配到
# ['2b3', '4d5']

注意:如果没写匹配规则,也就是空规则,返回的是一个比原始字符串多一位的,空字符串列表

import re
# 无分组
r = re.findall("", "a2b3c4d5") # 浏览全部字符串,匹配所有合规则的字符串,匹配到的字符串放到一个列表中
print(r) # 注意:如果没写匹配规则,也就是空规则,返回的是一个比原始字符串多一位的,空字符串列表
# ['', '', '', '', '', '', '', '', '']

2、有分组:只将匹配到的字符串里组的部分放到列表里返回,相当于groups()方法

import re
origin = "hello alex bcd alex lge alex acd 19"
r = re.findall("a(\w+)", origin) # 有分组:只将匹配到的字符串里,组的部分放到列表里返回
print(r)
# ['lex', 'lex', 'lex', 'cd']

注意:如果规则里只有一个组,而组后面是就表示组里的内容可以是0个或者多个,这样组里就有了两个意思,一个意思是匹配组里的内容,二个意思是匹配组里0内容(即是空白),所以尽量避免使用,否则会有可能匹配出空字符串

import re
origin = "hello alex bcd alex lge alex acd 19"
r = re.findall("(a)*", origin)
print(r)
# ['', '', '', '', '', '', 'a', '', '', '', '', '', '', '', '', 'a', '', '', '', '', '', '', '', '', 'a', '', '', '', '', 'a', '', '', '', '', '', '']

3、多个分组:只将匹配到的字符串里组的部分放到一个元组中,最后将所有元组放到一个列表里返回。

相当于在group()结果里再将组的部分,分别拿出来放入一个元组,最后将所有元组放入一个列表返回

import re
origin = "hello alex bcd alex lge alex acd 19"
# 多个分组:只将匹配到的字符串里,组的部分放到一个元组中,最后将所有元组放到一个列表里返回
r = re.findall("(a)(\w+)", origin)
print(r)
# [('a', 'lex'), ('a', 'lex'), ('a', 'lex'), ('a', 'cd')]

4、分组中有分组:只将匹配到的字符串里组的部分放到一个元组中,先将包含有组的组,看作一个整体也就是一个组,把这个整体组放入一个元组里,然后在把组里的组放入一个元组,最后将所有组放入一个列表返回

import re
origin = "hello alex bcd alex lge alex acd 19"
# 分组中有分组:只将匹配到的字符串里,组的部分放到一个元组中,先将包含有组的组,看作一个整体也就是一个组,把这个整体组放入一个元组里,然后在把组里的组放入一个元组,最后将所有组放入一个列表返回
r = re.findall("(a)(\w+(e))", origin)
print(r)
# [('a', 'le', 'e'), ('a', 'le', 'e'), ('a', 'le', 'e')]

5、?:在有分组的情况下findall()函数,不只拿分组里的字符串,拿所有匹配到的字符串。

注意?:只用于不是返回正则对象的函数如findall()

import re
origin = "hello alex bcd alex lge alex acd 19"
# ?:在有分组的情况下,不只拿分组里的字符串,拿所有匹配到的字符串,注意?:只用于不是返回正则对象的函数如findall()
b = re.findall("a(?:\w+)", origin)
print(b)
# ['alex', 'alex', 'alex', 'acd']

6、re.split():根据正则匹配分割字符串,返回分割后的一个列表

split(pattern, string, maxsplit=0, flags=0)

  • pattern: 正则模型
  • string : 要匹配的字符串
  • maxsplit:指定分割个数
  • flags : 匹配模式

按照一个字符将全部字符串进行分割

import re
origin = "hello alex bcd alex lge alex acd 19"
r = re.split("a", origin) # 根据正则匹配分割字符串
print(r)
# ['hello ', 'lex bcd ', 'lex lge ', 'lex ', 'cd 19']

将匹配到的字符串作为分割标准进行分割

import re
origin = "hello alex bcd alex lge alex 2acd 19"
r = re.split("a\w+", origin) # 根据正则匹配分割字符串
print(r)
# ['hello ', ' bcd ', ' lge ', ' 2', ' 19']

7、 re.sub():替换匹配成功的指定位置字符串

sub(pattern, repl, string, count=0, flags=0)

  • pattern: 正则模型
  • repl : 要替换的字符串
  • string : 要匹配的字符串
  • count : 指定匹配个数
  • flags : 匹配模式
import re
origin = "hello alex bcd alex lge alex acd 19"
r = re.sub("a", "替换", origin) # 替换匹配成功的指定位置字符串
print(r)
# hello 替换lex bcd 替换lex lge 替换lex 替换cd 19

l = ['1 2 ', '2   3', '  3 4']
print(eval(re.sub(r'\s*', '', str(l))))
# ['12', '23', '34']

8、 re.subn():替换匹配成功的指定位置字符串,并且返回替换次数,可以用两个变量分别接受

subn(pattern, repl, string, count=0, flags=0)

  • pattern: 正则模型
  • repl : 要替换的字符串
  • string : 要匹配的字符串
  • count : 指定匹配个数
  • flags : 匹配模式
import re

origin = "hello alex bcd alex lge alex acd 19"
a, b = re.subn("a", "替换", origin) # 替换匹配成功的指定位置字符串,并且返回替换次数,可以用两个变量分别接受
print(a) # hello 替换lex bcd 替换lex lge 替换lex 替换cd 19
print(b) #

24、python re正则表达式模块的更多相关文章

  1. Python re(正则表达式)模块

    python正则表达式 正则表达式是一个特殊的字符序列,它能帮助我们方便的检查一个字符串是否与某种模式匹配.Python自1.5版本起增加了re模块,它提供Perl风格的正则表达式模式.re模块使Py ...

  2. python re(正则表达式模块)学习

    一.简介 正则表达式本身是一种小型的.高度专业化的编程语言,而在python中,通过内嵌集成re模块,程序媛们可以直接调用来实现正则匹配.正则表达式模式被编译成一系列的字节码,然后由用C编写的匹配引擎 ...

  3. python re正则表达式模块

    模块的的作用主要是用于字符串和文本处理,查找,搜索,替换等 复习一下基本的正则表达式吧  .:匹配除了换行符以为的任意单个字符  *:匹配任意字符,一个,零个,多个都能匹配得到 俗称贪婪模式 +:匹配 ...

  4. Python之正则表达式模块

    正则表达式符号: . ^ $ * + ? {} () | [] .一个点代表一个字符 ^代表开头 $代表结尾 *代表有0到无数个 [0,+00] ?代表有0到1个      [0,1] +代表有1到无 ...

  5. 24.python中xlwt模块用法详解

    1.创建并保存一个excel 创建一个工作簿,设置编码格式为“utf-8”,默认格式是ASCII,为了方便写入中文,一般都要设置成UTF-8 import xlwt wb = xlwt.Workboo ...

  6. 【Python】正则表达式纯代码极简教程

    <Python3正则表达式>文字版详细教程链接:https://www.cnblogs.com/leejack/p/9189796.html ''' 内容:Python3正则表达式 日期: ...

  7. 【Python】正则表达式简单教程

    说明:本文主要是根据廖雪峰网站的正则表达式教程学习,并根据需要做了少许修改,此处记录下来以备后续查看. <Python正则表达式纯代码极简教程>链接:https://www.cnblogs ...

  8. python 历险记(六)— python 对正则表达式的使用(上篇)

    目录 引言 什么是正则表达式? 正则表达式有什么用? 正则表达式的语法及使用实例 正则表达式语法有哪些? 这些正则到底该怎么用? 小结 参考文档 系列文章列表 引言 刚接触正则表达式,我也曾被它们天书 ...

  9. Python数据分析学习-re正则表达式模块

    正则表达式 为高级的文本模式匹配.抽取.与/或文本形式的搜索和替换功能提供了基础.简单地说,正则表达式(简称为 regex)是一些由字符和特殊符号组成的字符串,它们描述了模式的重复或者表述多个字符,于 ...

随机推荐

  1. [C++进阶] 数据结构与算法

    1 出栈&入栈问题 一个栈的入栈序列为ABCDE,则不可能的出栈序列为?(不定项选择题) A:ECDBA  B:DCEAB   C:DECBA   D:ABCDE   E:EDCBA 正确答案 ...

  2. spark listener

    最近在做一个需求,当spark程序在读数据或写数据时,将所读的条数或或所写的条数实时的展现出来,这里用到了SparkListener,sparklisten 可以获取spark 各个运行阶段的状态. ...

  3. webstorm创建js文件时自动生成js注释

    设置webstorm创建js文件时自动生成js注释 settings--Editor--File and Code Temlates 黑色框框里的内容自己填写上去,以下是参考的代码块: /** * @ ...

  4. django 中进程监控工具flower的使用

    工程结构:请参考https://www.cnblogs.com/apple2016/p/11425307.html flower官方文档:https://flower.readthedocs.io/e ...

  5. C语言字节对齐分析

    1.前言 什么是字节对齐呢?现代计算机中的内存空间都是按字节(byte)划分的,从理论上讲似乎任何类型的变量的访问都可以从任何地址开始,但是实际情况是在访问特定变量的时候经常需要在特定的内存地址进行访 ...

  6. c/c++封装成python包

    参考网址:https://blog.csdn.net/tiankongtiankong01/article/details/80420033 SWIG (Simplified Wrapper and ...

  7. Java学习:迭代器简介

    迭代器 java.util.Iterator接口:迭代器(对集合进行遍历) 有两个常用的方法 boolean hasNext() 如果仍有元素可以迭代,则返回 true. 判断集合中还有没有下一个元素 ...

  8. 搞清楚一道关于Integer的面试题【华为云技术分享】

    请看题1: public class IntegerDemo { public static void main(String[] args) { Integer a = ; Integer b = ...

  9. C#中datatable操作

    //1.新建datatable,为其添加自定义列DataTable dt = new DataTable();dt.Columns.AddRange(new DataColumn[] { new Da ...

  10. MySql安装学习笔记

    参考地址:http://www.cnblogs.com/laumians-notes/p/9069498.html 该文章仅作为自己的学习笔记 一.准备mysql-8.0.11-winx64压缩包(示 ...