原文链接:https://yq.aliyun.com/articles/8301
作者:李永彬
发布时间:2016-03-17 16:37:47

  • 自然语言理解(Natural Language Understanding,NLU)以语言学为基础,融合逻辑学、心理学和计算机科学等学科,试图解决以下问题:语言究竟是怎样组织起来传输信息的?人又是怎样从一连串的语言符号中获取信息的?换种表达就是,通过语法、语义、语用的分析,获取自然语言的语义表示。

    自然语言理解的结果,就是要获得一个语义表示(semantic representation):
  • 分布语义,Distributional semantics:这种方法的优点在于,它完全是数据驱动的方法,并且能够很好的表示语义,但一个很大的缺点在于,它的表示结果是一个整体,没有进一步的子结构。
  • 框架语义,Frame semantics:这种方法和distributional semantics相比,能够表达丰富的结构。
  • 模型论语义,Model-theoretic semantics: 这种方法的典型框架是把自然语言映射成逻辑表达式(logic form),是对世界知识的完整表示,比前两种方法表达的语义更加完整,但是缺点是semantic parser的构建比较困难,这大大限制了该方法的应用。
  • 我们目前采用的是frame semantics表示的一种变形:采用领域(domain)、意图(intent)和属性槽(slots)来表示语义结果。领域分类和意图分类对应frame identification,属性抽取对应argument identification。

面临挑战
-(1)如何构建知识库
-(2)如何理解用户语句的意图
- 东三环堵吗/下水道堵吗;今天的天气/今天的天气不错;附近哪可以喝咖啡呀/感冒了可以喝咖啡吗
-(3)如何构建可扩展的算法框架
- 一个可扩展的算法框架,每当修改或者新增某个领域的时候,不会对其他领域造成干扰。
-(4)如何构建数据驱动的计算流程
-(5)如何融入上下文知识

  • 支持常见的数十个领域的理解
  • 一套可扩展的算法框架
  • 数据驱动的闭环流程

《自然语言理解(Natural Language Understanding)》(2016-03-17)阅读笔记的更多相关文章

  1. 【翻译】Knowledge-Aware Natural Language Understanding(摘要及目录)

    翻译Pradeep Dasigi的一篇长文 Knowledge-Aware Natural Language Understanding 基于知识感知的自然语言理解 摘要 Natural Langua ...

  2. 最佳实践:深度学习用于自然语言处理(Deep Learning for NLP Best Practices) - 阅读笔记

    https://www.wxnmh.com/thread-1528249.htm https://www.wxnmh.com/thread-1528251.htm https://www.wxnmh. ...

  3. <A Decomposable Attention Model for Natural Language Inference>(自然语言推理)

    http://www.xue63.com/toutiaojy/20180327G0DXP000.html 本文提出一种简单的自然语言推理任务下的神经网络结构,利用注意力机制(Attention Mec ...

  4. spaCy is a library for advanced natural language processing in Python and Cython:spaCy 工业级自然语言处理工具

    spaCy is a library for advanced natural language processing in Python and Cython. spaCy is built on ...

  5. 《Enhanced LSTM for Natural Language Inference》(自然语言推理)

    解决的问题 自然语言推理,判断a是否可以推理出b.简单讲就是判断2个句子ab是否有相同的含义. 方法 我们的自然语言推理网络由以下部分组成:输入编码(Input Encoding ),局部推理模型(L ...

  6. 吴恩达《深度学习》-课后测验-第五门课 序列模型(Sequence Models)-Week 2: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入)

    Week 2 Quiz: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入) 1.Suppose you learn ...

  7. 吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings)-课程笔记

    第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings) 2.1 词汇表征(Word Representation) 词汇表示,目 ...

  8. [C5W2] Sequence Models - Natural Language Processing and Word Embeddings

    第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings) 词汇表征(Word Representation) 上周我们学习了 RN ...

  9. Deep Learning for Natural Language Processing1

    Focus, Follow, and Forward Stanford CS224d 课程笔记 Lecture1 Stanford CS224d 课程笔记 Lecture1 Stanford大学在20 ...

随机推荐

  1. Ubuntu下映射网络驱动器

    Ubuntu下映射网络驱动器https://www.linuxidc.com/Linux/2013-07/86928.htm linux下samba访问路径: smb://192.168.1.111/ ...

  2. kbmmw 5.10.00 发布

    We are happy to announce v5.10.00 of the most complete development add on for Delphi and C++Builder ...

  3. U盘出现.exe问题的解决方案

    这代表U盘中了AutoRun病毒,原文件并未被删除,只是被设置为隐藏了. 所以切勿直接格式化U盘! 解决方案:分别创建文件1.reg和2.bat: 1.reg Windows Registry Edi ...

  4. 面试常问的join

    少壮不努力,老大徒伤悲 工作大半辈子了,来到个陌生的过度,从零开始,像个应届毕业生一样投入茫茫人才市场,碰的满头包. 凡是涉及到sql server的都会问,join的问题,不烦记录下: SQL的jo ...

  5. xml文件连表查询

    <!-- 根据条件查询资产信息 --> <select id="getAssetCommonByPage" resultType="java.util. ...

  6. Httpd服务入门知识-正向代理和反向代理

    Httpd服务入门知识-正向代理和反向代理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.正向代理和反向代理 启用反向代理 ProxyPass "/" &q ...

  7. linux中网络部分的总结

    二.简述iproute家族命令 静态配置地址的方法有一下几种方式: (1)ifconfig (2)ip命令 (3)GUI工具 (4)TUI工具 (5)编辑配置文件 1.ifconfig 查看接口:if ...

  8. Kali下安装Java环境

    <-----教你在Kali下安装Java环境-----> 1. 下载1.8u121的JAVA JDK 下载地址:http://java.sun.com/javase/downloads/i ...

  9. SaltStack--数据系统

    saltstack数据系统 数据系统Grains 1.Grains是SaltStack收集的有关底层管理系统的静态信息.包括操作系统版本.域名.IP地址.内存.内核.CPU.操作系统类型以及许多其他系 ...

  10. List的复制 (浅拷贝与深拷贝)

    开门见山的说,List的复制其实是很常见的,List其本质就是数组,而其存储的形式是地址 如图所示,将List A列表复制时,其实相当于A的内容复制给了B,java中相同内容的数组指向同一地址,即进行 ...