构建n位元的格雷码
二进制格雷码的生成
1、什么是格雷码
Gray Code是一个数列集合,每个数使用二进制来表示,假设使用n位元来表示每个数字,那么任两个数之间只有一个位元值不同。log2(16)=4
例如: 生成4位元的格雷码就是: 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000
Gray Code的顺序并不是唯一的,可以是上面的所形成的数列的任意一种。Gray Code是由贝尔实验室的Frank Gray在1940年代提出的,用来在使用PCM(Pusle Code Modulation)方法传送讯号时避免出错,并于1953年三月十七日取得美国专利。如果要产生n位的格雷码,那么格雷码的个数为2^n个
2,为什么要使用格雷码?
格雷码是一种具有反射特性和循环特性的单步自补码,其循环和单步特性消除了随机取数时出现重大错误的可能,其反射和自补特性使得对其进行求反操作也非常方便,所以,格雷码属于一种可靠性编码,是一种错误最小化的编码方式,因此格雷码在通信和测量技术中得到广泛应用。
格雷码属于可靠性编码,是一种错误最小化的编码方式。因为,虽然自然二进制码可以直接由数/模转换器转换成模拟信号,但在某些情况,例如从十进制的3转换为4时二进制码的每一位都要变,能使数字电路产生很大的尖峰电流脉冲。而格雷码则没有这一缺点,它在相邻位间转换时,只有一位产生变化。它大大地减少了由一个状态到下一个状态时逻辑的混淆。由于这种编码相邻的两个码组之间只有一位不同,因而在用于方向的转角位移量-数字量的转换中,当方向的转角位移量发生微小变化(而可能引起数字量发生变化时,格雷码仅改变一位,这样与其它编码同时改变两位或多位的情况相比更为可靠,即可减少出错的可能性。
在数字系统中,常要求代码按一定顺序变化。例如,按自然数递增计数,若采用8421码,则数0111变到1000时四位均要变化,而在实际电路中,4位的变化不可能绝对同时发生,则计数中可能出现短暂的其它代码(1100、1111等)。在特定情况下可能导致电路状态错误或输入错误。使用格雷码可以避免这种错误。
格雷码是一种绝对编码方式,典型格雷码是一种具有反射特性和循环特性的单步自补码,它的循环、单步特性消除了随机取数时出现重大误差的可能,它的反射、自补特性使得求反非常方便。
由于格雷码是一种变权码,每一位码没有固定的大小,很难直接进行比较大小和算术运算,也不能直接转换成液位信号,要经过一次码变换,变成自然二进制码,再由上位机读取。
典型格雷码是一种采用绝对编码方式的准权码,其权的绝对值为2^i-1(设最低位i=1)。
格雷码的十进制数奇偶性与其码字中1的个数的奇偶性相同。
3,应用
格雷氏编码与相位移在三维曲面量测:利用格雷码投射在微型曲面做量测 一个非接触式、投影的方法光学测量。
在化简逻辑函数时,可以通过按格雷码排列的卡诺图来完成。
角度传感器:汽车制动系统有时需要传感器产生的数字值来指示机械位置。如图是编码盘和一些触点的概念图,根据盘转的位置,触点产生一个3位二进制编码,共有8个这样的编码。盘中暗的区域与对应的逻辑1的信号源相连;亮的区域没有连接,触点将其解释为逻辑0。使用格雷码对编码盘上的亮暗区域编码,使得其连续的码字之间只有一个数位变化。这样就不会因为器件制造的精确度有限,而使得触点转到边界位置而出现错误编码。
九连环问题:中国的古老益智玩具九连环有着和格雷码完全相同的数学模式,外国一款名为spin out的玩具也是运用相同的数学模式。智力玩具九连环的状态 变化符合格雷码的编码规律,汉诺塔的解法也与格雷码有关。九连环中的每个环都有上下两种状态,如果把这两种状态用0/1来表示的话,这个状态序列就会形成一种循环二进制编码(格雷码)的序列。所以解决九连环问题所需要的状态变化数就是格雷码111111111所对应的十进制数341。
4,二进制格雷码的生成
问题:产生n位元的所有格雷码字符串表示。
格雷码(Gray Code)是一个数列集合,每个数使用二进位来表示,假设使用n位元来表示每个数字,任两个数之间只有一个位元值不同。
例如以下为3位元的格雷码: 000 001 011 010 110 111 101 100 。
如果要产生n位元的格雷码,那么格雷码的个数为2^n
总结:n位元的格雷码的个数为m,则 关系式为 Log2(m)=n 需要执行个数-1步(m-1) 比如3位元的格雷码个数为8个:Log2(8)=3 即: ( 2^n) - 1 步
5,直接排列
生成二进制格雷码方式1:以二进制为0值的格雷码为第零项,第一项改变最右边的位元,第二项改变右起第一个为1的位元的左边位元,第三、四项方法同第一、二项,如此反复,即可排列出n个位元的格雷码。
假设原始的值从0开始,格雷码产生的规律是:
第一步,改变最右边的位元值;
第二步,改变右起第一个为1的位元的左边位元;
第三步,第四步重复第一步和第二步,直到所有的格雷码产生完毕(换句话说,已经走了(2^n) - 1 步)。
用一个例子来说明:
总结:
当产生第偶数个数时,先找到最右边的一个1,把它左边的数字改变。当产生第偶数个数时,先找到最右边的一个1,把它左边的数字改变。
假设产生3位元的格雷码,原始值位 000
第一步:改变最右边的位元值: 001
第二步:改变右起第一个为1的位元的左边位元: 011
第三步:改变最右边的位元值: 010
第四步:改变右起第一个为1的位元的左边位元: 110
第五步:改变最右边的位元值: 111
第六步:改变右起第一个为1的位元的左边位元: 101
第七步:改变最右边的位元值: 100
2,镜射排列
生成二进制格雷码方式2:n位元的格雷码可以从n-1位元的格雷码以上下镜射后加上新位元的方式快速的得到,如图所示。
如果按照直接排列规则来生成格雷码,是没有问题的,但是这样做太复杂了。如果仔细观察格雷码的结构,我们会有以下发现:
1、除了最高位(左边第一位),格雷码的位元完全上下对称(看下面列表)。比如第一个格雷码与最后一个格雷码对称(除了第一位),第二个格雷码与倒数第二个对称,以此类推。
2、最小的重复单元是 0 , 1。
所以,在实现的时候,我们完全可以利用递归,在每一层前面加上0或者1,然后就可以列出所有的格雷码。
比如:
第一步:产生 0, 1 两个字符串。
第二步:在第一步的基础上,正向每一个字符串都分别加上0,然后反向迭代每一个字符串都加上1,但是每次只能加一个,所以得做两次。这样就变成了 00,01,11,10 (注意对称)。
第三步:在第二步的基础上,再给每个字符串都加上0和1,同样,每次只能加一个,这样就变成了 000,001,011,010,110,111,101,100。这样就把3位元格雷码生成好了。
如果要生成4位元格雷码,我们只需要在3位元格雷码上再加一层0,1就可以了: 0000,0001,0011,0010,0110,0111,0101,0100,1100,1101,1110,1010,0111,1001,1000.
也就是说,n位元格雷码是基于n-1位元格雷码产生的。
[格雷码(Gray Code)转二进制码(Binary Code)]
例如c语言生成n位格雷码:
格雷码是以n位的二进制来表示数。
与普通的二进制表示不同的是,它要求相邻两个数字只能有1个数位不同。
首尾两个数字也要求只有1位之差。
有很多算法来生成格雷码。以下是较常见的一种:
从编码全0开始生成。
当产生第奇数个数时,只把当前数字最末位改变(0变1,1变0)
当产生第偶数个数时,先找到最右边的一个1,把它左边的数字改变。
用这个规则产生的4位格雷码序列如下:
0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000
例1,将输入的常数,自动识别位元数,并转换为格雷码:
#include<stdio.h>
#include<string.h>
#include<math.h>
void change(char &ch) {
if (ch == '')
ch = '';
else
ch = '';
}
int main() {
int n;//需要转换的数
scanf_s("%d", &n); //输入需要转换的数
int size = log2(n) + ; //计算所需位数 size位元 float 到 int 顶多是数值失真,小数部分会丢失
//printf("111%f\n", log2(7));==2.8
char *a = new char[size];
a[size] = '\0';
memset(a, '', size); //初始化数组 :将已开辟内存空间 a 的首 size个字节的值设为值 0。
for (int i = ; i <= n; i++) {
if (i % )//余数不为0 当产生第奇数个数时,只把当前数字最末位改变(0变1,1变0)
change(a[size - ]); //奇数改末尾
else //余数为0 当产生第偶数个数时,先找到最右边的一个1,把它左边的数字改变。
for (int j = size - ; j > ; j--) { //偶数操作
if (a[j] == '') {
change(a[j - ]);
break;
}
}
printf("%s\n", a); //此行可去除
}
printf("result = %s\n", a); return ;
}
例2;要求输入位元n,转换打印出所有该位元的格雷码:(和上面代码变动不大,注意细节)
#include<stdio.h>
#include<string.h>
#include<math.h>
void change(char &ch) {
if (ch == '')
ch = '';
else
ch = '';
}
int main() {
int n;//需要转换的数
printf("请输入需要转换的格雷码位元数:");
scanf_s("%d", &n); //输入需要转换的数
//int size = log2(n) + 1; //计算所需位数 size位元 float 到 int 顶多是数值失真,小数部分会丢失
printf("测试N:%f\n", log2());//==2.8 char *a = new char[n];
a[n] = '\0';
memset(a, '', n); //初始化数组 :将已开辟内存空间 a 的首 size个字节的值设为值 0。
for (int i = ; i <=pow(,n); i++) {
if (i % )//余数不为0 当产生第奇数个数时,只把当前数字最末位改变(0变1,1变0)
change(a[n - ]); //奇数改末尾
else //余数为0 当产生第偶数个数时,先找到最右边的一个1,把它左边的数字改变。
for (int j = n - ; j > ; j--) { //偶数操作
if (a[j] == '') {
change(a[j - ]);
break;
}
}
printf("%s\n", a); //此行可去除
}
printf("result = %s\n", a); return ;
}
构建n位元的格雷码的更多相关文章
- 产生n位元的所有格雷码
原文链接:http://blog.csdn.net/beiyeqingteng/article/details/7044471 问题:产生n位元的所有格雷码. 格雷码(Gray Code)是一个数列集 ...
- [LeetCode] Gray Code 格雷码
The gray code is a binary numeral system where two successive values differ in only one bit. Given a ...
- 格雷码Gray Code详解
格雷码简介 在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码(Gray Code),另外由于最大数与最小数之间也仅一位数不同,即“首尾相连”,因此又称循环码或反射码.格 ...
- 用硬件(Verilog)实现二进制码和格雷码的转换
格雷码(Gray code)是1880年由法国工程师Jean-Maurice-Emlle Baudot发明的一种编码,是一种绝对编码方式,典型格雷码是一种具有反射特性和循环特性的单步自补码,它的循环. ...
- P5657 格雷码【民间数据】
P5657 格雷码[民间数据] 题解 其实这题水啊 打表找规律 [1]0 1 [2]00 01 11 10 [3]000 001 011 010 110 111 1 ...
- 构造N位格雷码(递归,面向对象)
问题:递归打印出N位格雷码(相邻两个编码只有一位数字不同): 问题化归为:现有前N位的格雷码,如何构造N+1位的格雷码? 解决方法:采用递归构造格雷码集和. 递归出口:n = 1; 此时格雷码{0,1 ...
- 求解n位格雷码
/************************************************************************* > File Name: Gray.cpp ...
- BZOJ1081[SCOI2005]超级格雷码
Description 著名的格雷码是指2n个不同n位二进制数(即0~2n-1,不足n位在前补零)的一个排列,这个排列满足相邻的两个二进制数的n位数字中最多只有一个数字不同(例如003和001就有一个 ...
- 格雷码原理与Verilog实现
格雷码原理 格雷码是一个叫弗兰克*格雷的人在1953年发明的,最初用于通信.格雷码是一种循环二进制码或者叫作反射二进制码.格雷码的特点是从一个数变为相邻的一个数时,只有一个数据位发生跳变,由于这种特点 ...
随机推荐
- 剑指Offer-2.替换空格(C++/Java)
题目: 请实现一个函数,将一个字符串中的每个空格替换成“%20”.例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy. 分析: 题意明确,就是将一个字符 ...
- vue_day05
目录 vue前后端交互: vue 分离前后端交互: vue前端发送请求: vue请求插件--axios: main.js配置: 前端朝后端请求传参方式: django后端返回数据样式: vue配置El ...
- 第04组 Alpha事后诸葛亮
一.组长博客:地址 二.Postmortem模板 设想和目标 1.我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们要解决的问题是让大学生可以通过福鱼网站将暂时无 ...
- VMware 自动开多台虚拟机脚本
d:cd "D:\WinInstall\VMware\VMware Workstation"ECHO "start vm1"vmrun -T ws start ...
- ES6中Class与export简单用法
一.Class ES6中的Class用法类似Java的Class用法,但class的本质是js一个function //定义类 class Person { //定义构造方法 constructor( ...
- Win10导出查看删除已安装的证书
1.控制面板中搜索证书 2.点击管理用户证书或管理计算机证书,即可查看所有安装好的证书 3.双击即可查看证书,右键证书即可删除无效的证书 4.搜索证书,比如百度用到的根证书是GlobalSign Ro ...
- pixijs shader 制作百叶窗效果
pixijs shader 制作百叶窗效果 直接贴代码了 const app = new PIXI.Application({ transparent: true }); document.body. ...
- Elasticsearch 7.x从入门到精通
Elasticsearch是一个分布式.可扩展.近实时的搜索与数据分析引擎,它能从项目一开始就赋予你的数据以搜索.分析和探索的能力. 通过本专栏的学习,你可以了解到,Elasticsearch在互联网 ...
- [ICP]手推SVD方法
该方法源于<Least-Squares Rigid Motion Using SVD>,原文推导十分详细,这里自己也仔细推导了一遍,有些地方加以注释整理. 问题定义 假设我们有两个点云集合 ...
- ConsoleColor原来有16种, enumData.GetValue(i)
Console.WriteLine("Name:{0},Value:{0:D}", enumData.GetValue(i)); Name:Black,Value:0Name:Da ...