import tensorflow as tf
import numpy as np def distance_matrix(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
, it's size: (num_point, num_point)
"""
num_point, num_features = array1.shape
expanded_array1 = tf.tile(array1, (num_point, 1))
expanded_array2 = tf.reshape(
tf.tile(tf.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = tf.norm(expanded_array1-expanded_array2, axis=1)
distances = tf.reshape(distances, (num_point, num_point))
return distances def av_dist(array1, array2):
"""
arguments:
array1, array2: both size: (num_points, num_feature)
returns:
distances: size: (1,)
"""
distances = distance_matrix(array1, array2)
distances = tf.reduce_min(distances, axis=1)
distances = tf.reduce_mean(distances)
return distances def av_dist_sum(arrays):
"""
arguments:
arrays: array1, array2
returns:
sum of av_dist(array1, array2) and av_dist(array2, array1)
"""
array1, array2 = arrays
av_dist1 = av_dist(array1, array2)
av_dist2 = av_dist(array2, array1)
return av_dist1+av_dist2 def chamfer_distance_tf(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = tf.reduce_mean(
tf.map_fn(av_dist_sum, elems=(array1, array2), dtype=tf.float64)
)
return dist def array2samples_distance(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
"""
num_point, num_features = array1.shape
expanded_array1 = np.tile(array1, (num_point, 1))
expanded_array2 = np.reshape(
np.tile(np.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = np.linalg.norm(expanded_array1-expanded_array2, axis=1)
distances = np.reshape(distances, (num_point, num_point))
distances = np.min(distances, axis=1)
distances = np.mean(distances)
return distances def chamfer_distance_numpy(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = 0
for i in range(batch_size):
av_dist1 = array2samples_distance(array1[i], array2[i])
av_dist2 = array2samples_distance(array2[i], array1[i])
dist = dist + (av_dist1+av_dist2)/batch_size
return dist if __name__=='__main__':
batch_size = 3
num_point = 10
num_features = 3
np.random.seed(1)
array1 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
array2 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
print (array1)
#print(array2)
print('numpy: ', chamfer_distance_numpy(array1, array2))

  

chamfer_pcd的更多相关文章

随机推荐

  1. KM模板 最大权匹配(广搜版) Luogu P1559 运动员最佳匹配问题

    KM板题: #include <bits/stdc++.h> using namespace std; inline void read(int &num) { char ch; ...

  2. python -- 连接 orclae cx_Oracle的使用 二

    转:https://www.cnblogs.com/cyxiaer/p/9396861.html 必需的Oracle链接库的下载地址:https://www.oracle.com/technetwor ...

  3. Java web开发——文件的上传和下载

    一. 功能性需求与非功能性需求 要求操作便利,一次选择多个文件和文件夹进行上传:支持PC端全平台操作系统,Windows,Linux,Mac 支持文件和文件夹的批量下载,断点续传.刷新页面后继续传输. ...

  4. Vigil 发送多人邮件通知的处理

    Vigil 默认是只能发送单人邮件,但是我们有需要发送多个的场景. 解决方法: 大家使用一样的账户登陆 使用邮件组 修改下源码 为了学习下Vigil 的构建,以及原理,我简单通过修改源码的方式(目前支 ...

  5. 13-ESP8266 SDK开发基础入门篇--上位机串口控制 Wi-Fi输出PWM的占空比,IEEE754规约

    https://www.cnblogs.com/yangfengwu/p/11100552.html 这节做个上位机控制Wi-Fi引脚输出的PWM占空比信号,灯的亮度就可以用上位机控制了 大家可以自己 ...

  6. 微信小程序class封装http

    config.js var config = { base_api_url:"https://douban.uieee.com/v2/" } export {config} uti ...

  7. 设置多个className

    有时候我们需要有选择地设置多个className function myComponent(props) { const myClassName = { 'aaa', {'bbb': props.ne ...

  8. (转载)ranger原理

    文章目录 一.业务背景 现状&&需求 二.大数据安全组件介绍与对比 1.Kerberos 2.Apache Sentry 3.Apache Ranger 4.为什么我们选择Ranger ...

  9. Linux下的nexus数据迁移

    刚到公司没多久,目前公司有两个项目公用一个nexus的maven私服,现在想把两个私服的jar包拆分开: 我在原私服的nexus服务器中, 1.备份原nexus使用命令 完成tar包的压缩 打包完毕后 ...

  10. 从0开始部署GPU集群-0:基本情况

    配置信息(多台服务器) 1 硬件:CPU和GPU*可选 2 操作系统:centos7 3 驱动:nvidia显卡驱动  *可选 4 容器运行时:docker 和 nvidia container ru ...