Primal vs Dual

为什么要把原始问题(primal) 转为 对偶问题(dual), 主要原因在于, 求解方便吧大概.

对偶问题

  • 原始问题和其对偶问题, 都是对看待同一个问题的,从不同角度, 例如求解一个最小化问题, 然后通过对偶形式求解最大化问题等.
  • 原问题不好求解, 转为对偶问题, 有一种类似逼近的思想, 比如拉格朗日 或是 泰勒级数展开

既然是对于同一个问题的不同角度来看, 假设就两个角度: primal 和 dual. 假设, 在primal 即原始问题下的最优解为 \(p*\), 在其dual的角度下, 最优解为 \(d^*\)则有

  • p* = d* (Strong duality), 强对偶, 比如SVM 的KKT条件
  • p* != d* (Week duality)

从primal 转为 dual, 可以通过 拉格朗日乘子来实现.

Lower bound property

结论: p* >= d*

Standard Form:

\(minmize \ f_0(x) \\ s.t. \\ f_i(x) <=0, i=1,2,..m \\ h_j(x) = 0, j = 1,2...p\)

通过拉格朗日乘子(将约束转为无约束求极值)

why 拉格朗日乘子法?

  • 回顾多元函数求条件极值的思路(高数),

  • 假设2维, 曲线g(x,y) = 0 与f(x,y) =Ck, 的等值线(面) 相交, 那么沿着g(x,y)=0的方向两头向曲点靠近, 必然一个方向使得f(x,y)=Ck增大, 而另一个方向使CK减少, 必然在g(x,y)上存在一点使得Ck最小. 而这个点就是f(x,y)=a 与g(x,y)=0 相切的点, 切点处的两个法向量(梯度向量) 是平行的
  • 即: 在切点的法向量(梯度方向) 是平行的 (相乘\(\lambda\) 倍常数, \(\lambda >0\))

假设切点是 \((x_0, y_0)\), 根据f(x,y), g(x,y) 在该处的梯度是平行的, 即

\(\nabla f(x_0, y_0) = (f_x(x_0, y_0), f_y (x_0, y_0)) \\ \nabla g(x_0, y_0) = (g_x(x_0, y_0), g_y (x_0, y_0))\)

\(由 \nabla f(x_0,y_0) // \nabla g(x_0,y_0) 得 \\ \frac {\nabla f(x_0,y_0) } {\nabla g(x_0,y_0)} = -\lambda _0 因此得出:\)

\(f_x(x_0, y_0) + \lambda_0 \ g_x(x_0,y_0)) = 0 \\ f_y(x_0, y_0) + \lambda_0 \ g_y(x_0,y_0))=0 \\ g(x_0, y_0) = 0\)

由此将条件极值问题通过拉格朗日乘子,转为了求解方程组的问题.

为了求解,引入一个辅助函数 \(L(x,y, \lambda) = f(x,y) + \lambda \ g(x,y)\)

  • 这个函数称为拉格朗日函数, \(\lambda\) 称为拉格朗日乘子
  • 可微函数去极值的必要条件是梯度向量等于零

即: \(\nabla L(x_0,y_0, \lambda_0) = 0\), 恰好对应上面的方程组, 巧了吗, 这不是.

(ps, 当然也可以通过分析方法隐函数相关知识来推导出, 这里不展开了).

通过拉格朗日, 将primal 转为dual 即

\(L(x, \lambda, \nu) = f_0(x) + \sum _{i=1}^{m} \lambda_i f_i(x) + \sum _{i=1}^p \nu_ih_i(x)\)

转为拉格朗日的 dual 函数形式即:

\(g(\lambda, \nu) = infimum_x L(x, \lambda, \nu), \ inf..表示下界\)

\(= inf_x [ f_0(x) + \sum _{i=1}^{m} \lambda_i f_i(x) + \sum _{i=1}^p \nu_ih_i(x) ]\)

即所谓的 lower bound property:

即: \(g(\lambda, \nu) <= p* = f_0(x*) \leftarrow \forall \lambda, \nu\) (此乃最为关键一环),

这种思想就是: \(min \ primal \rightleftharpoons max \ dual\)

证明如下:

\(minmize \ f_0(x) \\ s.t. \\ f_i(x) <=0, i=1,2,..m \\ h_j(x) = 0, j = 1,2...p\)

假设 x' 是primal 问题的可行解, 即:

\(L(x', \lambda, \nu) = f_0(x') + \sum _{i=1}^{m} \lambda_i f_i(x') + \sum _{i=1}^p \nu_ih_i(x')\) , 则必然有

$f_0(x') >= L(x', \lambda, \nu) >= inf_x (x,\lambda, \nu) = g(\lambda, \nu) $ (可证: \(g(\lambda, \nu) 是一个 凹函数 "\cap"这样的\) )

  • \(\sum _{i=1}^{m} \lambda_i f_i(x') <= 0\), 因为x'是可行解, 满足约束条件
  • \(\sum _{i=1}^p \nu_ih_i(x') = 0\), 同样因为约束条件

即证: $f_0(x') >= g(\lambda, \nu), 即: p* >= d^* $

case1: Least Norm Minimization

\(min \ x^Tx \\ s.t. \ Ax=b\)

解:

引入拉格朗日函数:

\(L(x, \lambda) = x^Tx + \lambda^T(Ax-b) \\ 首先来"固定"x: \\ \nabla_x L(x, \lambda) = 0 = 2x+ A^T\lambda \\ 得出 x = -\frac {1}{2}A^T \lambda \\ 代入\)

\(g(\lambda) = inf_x [x^Tx + \lambda ^T (Ax-b)] \\ = (-\frac {1}{2}A^T \lambda) ^T (-\frac {1}{2}A^T \lambda) + \lambda ^T[A( -\frac {1}{2}A^T \lambda)-b]\)

\(= \frac {1}{4} \lambda^T A A^T \lambda - \frac {1}{2} \lambda^T AA^T \lambda - \lambda^Tb\)

$ = - \frac{1}{4} \lambda^T AA^T \lambda - \lambda^Tb $

即: $ p* >= - \frac{1}{4} \lambda^T AA^T \lambda - \lambda^Tb $

即对应的dual:

\(max \ z = - \frac{1}{4} \lambda^T AA^T \lambda - \lambda^Tb \\ s.t. ..\)

case2: Linear Programing

\(min \ w^Tx \\ s.t. \\ Ax=b \\ x \succ =0\)

先进行标准化得到:

\(min \ w^Tx \\ s.t. \\ Ax=b \\ -x <=0\)

引入拉格朗日函数得:

\(L(x, \lambda, \nu) = w^Tx + \lambda^T (Ax-b) + \nu ^T(-x)\)

\(= w^Tx + \lambda^T Ax - \lambda ^Tb -\nu^T x\)

\(= (w + A^T \lambda - \nu) x -\lambda^Tb\)

同样首先"固定x:"

\(\nabla_x L(x, \lambda, \nu) = 0 = w + A^T \lambda -v \\ 得出: x 好像不影响哦\)

将不影响的x 代入g得到:

\(g(\lambda, \nu) = inf_x ( -\lambda^Tb)\)

即对应的 daul:

\(max \ -\lambda ^T b \\ s.t. \ w+A^T \lambda- \nu = 0\)

发现 \(\nu >0\) 其实跟木目标函数无关, 即可转为:

\(max \ -\nu ^T b \\ s.t. \ w+A^T >= 0\)

Strong and Weak duality

由上, 关于primal 问题和 dual 问题, 如果其最优解分别是 p* 和 d* ,

根据 lower bound property 的推导则有p * >= d * :

  • if p* = d*, 则称为强对偶

  • if p* < d*, 则称为弱对偶

强对偶(strong) ,一般情况下不会发生, 在凸函数下一般会成立; 对于non-convex 有时是会成立的. 针对于convex 判断其是强对偶的条件称为:

slater's condtions

即: \(minmize \ f_0(x) \\ s.t. \\ f_i(x) <=0, i=1,2,..m \\ h_j(x) = 0, j = 1,2...p\)

\(\exists \ x', f_i(x') <0, h_j(x')=0\)

则称满足 slater's conditons, 可判定该凸函数是强对偶的哦.

complementary slackness

暂时我也不知道该怎么进行翻译, "松弛条件?", 感觉也不大合理. 算了, 就英文吧, 反正都是一个符号而已. 假设, 我们来来**考虑强对偶的情况下(p * = d *):**

  • x* 是 primal 问题的解
  • \(\lambda^*, \nu^*\) 是dual 问题的解

\(minmize \ f_0(x) \\ s.t. \\ f_i(x) <=0, i=1,2,..m \\ h_j(x) = 0, j = 1,2...p\)

即有

\(f_0(x^*) = g(\lambda^*, \nu^*) \\ 对于 \\ inf_x [f_0(x) + \sum _{i=1}^{m} \lambda_i ^* f_i(x) + \sum _{i=1}^p \nu_i^*h_i(x) ]\)

必然:

\(<= inf_x [f_0(x^*) + \sum _{i=1}^{m} \lambda_i ^* f_i(x^*) + \sum _{i=1}^p \nu_i^*h_i(x^*) ]\)

  • \(h_i(x*) = 0\)
  • \(\lambda^* f_i(x^*)<=0\)

\(<= f_0(x^*)\)

这就发现有点矛盾(= 和 <=)了, 要使不等式成立的话, 发现只能取等于哦, 即:

\(\lambda^* f_i(x^*)=0\), 这样也就意味着2种情况:

  • \(\lambda ^* = 0, \ 然后 \lambda^* f_i(x^*)<=0\)
  • \(\lambda ^* > 0, \ 然后 \lambda^* f_i(x^*)=0\)

把这个条件: \(\lambda^* f_i(x^*)=0\) 就称为 complementary slackness, 它是构成KKT条件的一部分, 后面再整一波KKT吧.

ML-对偶(Duality)问题初识的更多相关文章

  1. 【机器学习】从SVM到SVR

    注:最近在工作中,高频率的接触到了SVM模型,而且还有使用SVM模型做回归的情况,即SVR.另外考虑到自己从第一次知道这个模型到现在也差不多两年时间了,从最开始的腾云驾雾到现在有了一点直观的认识,花费 ...

  2. SVM-SVR

    高频率的接触到了SVM模型,而且还有使用SVM模型做回归的情况,即SVR.另外考虑到自己从第一次知道这个模型到现在也差不多两年时间了,从最开始的腾云驾雾到现在有了一点直观的认识,花费了不少时间.因此在 ...

  3. Apache-Flink深度解析-JOIN 算子

    什么是JOIN 在<Apache Flink 漫谈系列 - SQL概览>中我对JOIN算子有过简单的介绍,这里我们以具体实例的方式让大家对JOIN算子加深印象.JOIN的本质是分别从N(N ...

  4. Apache Flink 漫谈系列 - JOIN 算子

    聊什么 在<Apache Flink 漫谈系列 - SQL概览>中我们介绍了JOIN算子的语义和基本的使用方式,介绍过程中大家发现Apache Flink在语法语义上是遵循ANSI-SQL ...

  5. Category Theory: 01 One Structured Family of Structures

    Category Theory: 01 One Structured Family of Structures 这次看来要放弃了.看了大概三分之一.似乎不能够让注意力集中了.先更新吧. 群的定义 \( ...

  6. 拉格朗日对偶(Lagrange duality)

    拉格朗日对偶(Lagrange duality) 存在等式约束的极值问题求法,比如下面的最优化问题:              目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用 ...

  7. iOS Core ML与Vision初识

    代码地址如下:http://www.demodashi.com/demo/11715.html 教之道 贵以专 昔孟母 择邻处 子不学 断机杼 随着苹果新品iPhone x的发布,正式版iOS 11也 ...

  8. 简易解说拉格朗日对偶(Lagrange duality)(转载)

    引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不 ...

  9. 简易解说拉格朗日对偶(Lagrange duality)

    引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不 ...

随机推荐

  1. python发邮件报错SMTP AUTH extension not supported by server."

    在login(username,password)之前添加 smtp.ehlo() smtp.starttls() d ={'smtp_server': '','smtp_email': '','sm ...

  2. Java——判断回文

    package basic; import java.util.Scanner; public class Palindrome{ public static boolean isPalindrome ...

  3. 请指出document load和document ready的区别

    document load文档的所有内容都加载完成 document ready文档的DOM加载完成

  4. 为什么两个一样的对象,用===打印是false

    对象的地址(变量名)存在栈中,对象的引用指向堆中,比较对象的时候,是比较对象的引用是否相等.obj和obj1的引用地址分别指向堆中的两块数据,所以不相等.

  5. Seminar Schedule

    Seminar Schedule (C2017 | 2019.9-12 | 3rd semester S0500783) *************************************** ...

  6. ES6解构赋值常见用法

    解构赋值出现的契机: let obj = { a: 1, b: 2 } // 取值 let a = obj.a let b = obj.b 问题核心: 每次取值既要确定对象属性名,还得重新定义一个变量 ...

  7. VS Code 安装与配置(使用MSYS2环境与mingw-w64 编译环境)

     更正了顺序,之前不知道怎么回事,内容顺序乱了 力求完美.详细,所以希望懂的人留言指点一下. 目前已经开始添加原理解释,希望大家能分享一些gcc gdb C语言等方面优秀链接 后续会慢慢增添内容,修正 ...

  8. Java高级开发_性能优化的细节

    一.核心部分总结: 尽量在合适的场合使用单例[减负提高效率] 尽量避免随意使用静态变量[GC] 尽量重用对象,避免过多过常地创建Java对象[最大限度地重用对象] 尽量使用final修饰符[内联(in ...

  9. [BZOJ2186]沙拉公主的困惑

    [BZOJ2186]沙拉公主的困惑 题面 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定 ...

  10. 热点Key问题的发现与解决

    热点问题概述 产生原因 热点问题产生的原因大致有以下两种: 用户消费的数据远大于生产的数据(热卖商品.热点新闻.热点评论.明星直播). 在日常工作生活中一些突发的的事件,例如:双十一期间某些热门商品的 ...