基本原理:

  迪杰斯特拉算法是一种贪心算法。

  首先建立一个集合,初始化只有一个顶点。每次将当前集合的所有顶点(初始只有一个顶点)看成一个整体,找到集合外与集合距离最近的顶点,将其加入集合并检查是否修改路径距离(比较在集合内源点到达目标点中各个路径的距离,取最小值),以此类推,直到将所有点都加入集合中。得到的就是源点到达各顶点最短距离。时间复杂度为 O(n^2)。

变量解释:

  1、采用图的邻接矩阵存储结构;

  2、辅助数组visited[n] :表示当前顶点的最短路径是否求出,1表示求出;

  3、辅助数组path[n] :记录路径,字符串类型;

  4、返回结果shortPath[n]

算法代码:

 public class Dijkstra {
public static final int M = 10000; // 代表正无穷 //案例演示
public static void main(String[] args) {
// 二维数组每一行分别是 A、B、C、D、E 各点到其余点的距离,
// A -> A 距离为0, 常量M 为正无穷
int[][] weight1 = {
{0,4,M,2,M},
{4,0,4,1,M},
{M,4,0,1,3},
{2,1,1,0,7},
{M,M,3,7,0}
}; int start = 0; int[] shortPath = dijkstra(weight1, start); for (int i = 0; i < shortPath.length; i++)
System.out.println("从" + start + "出发到" + i + "的最短距离为:" + shortPath[i]);
} public static int[] dijkstra(int[][] weight, int start) {
// 接受一个有向图的权重矩阵,和一个起点编号start(从0编号,顶点存在数组中)
// 返回一个int[] 数组,表示从start到它的最短路径长度
int n = weight.length; // 顶点个数
int[] shortPath = new int[n]; // 保存start到其他各点的最短路径
String[] path = new String[n]; // 保存start到其他各点最短路径的字符串表示
for (int i = 0; i < n; i++)
path[i] = new String(start + "-->" + i);
int[] visited = new int[n]; // 标记当前该顶点的最短路径是否已经求出,1表示已求出 // 初始化,第一个顶点已经求出
shortPath[start] = 0;
visited[start] = 1; for (int count = 1; count < n; count++) { // 要加入n-1个顶点
int k = -1; // 选出一个距离初始顶点start最近的未标记顶点
int dmin = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
if (visited[i] == 0 && weight[start][i] < dmin) {
dmin = weight[start][i];
k = i;
}
} // 将新选出的顶点标记为已求出最短路径,且到start的最短路径就是dmin
shortPath[k] = dmin;
visited[k] = 1; // 以k为中间点,修正从start到未访问各点的距离
for (int i = 0; i < n; i++) {
//如果 '起始点到当前点距离' + '当前点到某点距离' < '起始点到某点距离', 则更新
if (visited[i] == 0 && weight[start][k] + weight[k][i] < weight[start][i]) {
weight[start][i] = weight[start][k] + weight[k][i];
path[i] = path[k] + "-->" + i;
}
}
}
for (int i = 0; i < n; i++) { System.out.println("从" + start + "出发到" + i + "的最短路径为:" + path[i]);
}
System.out.println("=====================================");
return shortPath;
} }

Dijkstra算法求最短路径 Java实现的更多相关文章

  1. Dijkstra算法求最短路径(java)(转)

    原文链接:Dijkstra算法求最短路径(java) 任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到 ...

  2. _DataStructure_C_Impl:Dijkstra算法求最短路径

    // _DataStructure_C_Impl:Dijkstra #include<stdio.h> #include<stdlib.h> #include<strin ...

  3. 《算法导论》读书笔记之图论算法—Dijkstra 算法求最短路径

    自从打ACM以来也算是用Dijkstra算法来求最短路径了好久,现在就写一篇博客来介绍一下这个算法吧 :) Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的 ...

  4. 通俗易懂理解——dijkstra算法求最短路径

    迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径.它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止 ###基本思想 通过Dij ...

  5. Java实现Dijkstra算法求最短路径

    任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层 ...

  6. Dijkstra算法求最短路径

    #include <stdio.h> #include <stdlib.h> #include <string.h> #include <limits.h&g ...

  7. Dijkstra算法求单源最短路径

    Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店 ...

  8. js迪杰斯特拉算法求最短路径

    1.后台生成矩阵 名词解释和下图参考:https://blog.csdn.net/csdnxcn/article/details/80057574 double[,] arr = new double ...

  9. C++迪杰斯特拉算法求最短路径

    一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...

随机推荐

  1. ESA2GJK1DH1K基础篇: 测试APP扫描Air202上面的二维码绑定通过MQTT控制设备(兼容SIM800)

    前言 此程序兼容SIM800 如果想绑定SIM800,请把其IMEI号,生成二维码,用手机APP扫描. 实现功能概要 APP通过扫描二维码获取GPRS设备的IMEI号,然后设置订阅的主题:device ...

  2. BootStrap Table 合并单元格

    为了更直观展示表格的一大堆乱七八糟的数据,合并单元格就派上用场: 效果: 贴上JSON数据(后台查询数据一定要对合并字段排序): [ { "city": "广州市&quo ...

  3. [THUPC2019]过河卒二(组合数学,容斥原理)

    以后都懒得写题目大意和数据范围了. hz学长的题其实也不那么毒瘤吗.比CDW的好多了 先考虑没有障碍怎么做. 首先发现,答案相当于一个左下角是 $(1,1)$,右上角是 $(n+1,m+1)$ 的棋盘 ...

  4. 10-排序5 PAT Judge (25 分)

    The ranklist of PAT is generated from the status list, which shows the scores of the submissions. Th ...

  5. CF1215E Marbles

    CF1215E Marbles 传送门 思路 一道比较有意思的状压dp. 首先有一个结论,把一个序列通过交换相邻元素排序,那么交换次数的最小值就是逆序对个数. 证明:从小到大依次把元素换到最前面,那么 ...

  6. FCB CCB FileObject

    CCB  ContextControlBlock  是存Private信息的,这个FO的特殊信息 FCB  FileControlBlock          是存全局信息的 FO    FileOb ...

  7. 使用rxjs以及javascript解决前端的防抖和节流

    JavaScript实现方式: 防抖 触发高频事件后 n 秒内函数只会执行一次,如果 n 秒内高频事件再次被触发,则重新计算时间:思路:每次触发事件时都取消之前的延时调用方法: 举个例子:做一个自动查 ...

  8. 【RS】AutoRec: Autoencoders Meet Collaborative Filtering - AutoRec:当自编码器遇上协同过滤

    [论文标题]AutoRec: Autoencoders Meet Collaborative Filtering (WWW'15) [论文作者]Suvash Sedhain †∗ , Aditya K ...

  9. Maven 教程(15)— 实现多个项目关联自动化构建(maven-invoker-plugin插件的使用)

    原文地址:https://blog.csdn.net/liupeifeng3514/article/details/79726664 一.场景设想一个团队正在开发一个项目 bus-core-api,并 ...

  10. JavaScript核心知识点

    一.JavaScript 简介 一.JavaScript语言的介绍:JavaScript是基于对象和原型的一种动态.弱类型的脚本语言 二.JavaScript语言的组成:JavaScript是由核心语 ...