A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

Note: m and n will be at most 100.

Example 1:

Input:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right

这道题是之前那道 Unique Paths 的延伸,在路径中加了一些障碍物,还是用动态规划 Dynamic Programming 来解,使用一个二维的 dp 数组,大小为 (m+1) x (n+1),这里的 dp[i][j] 表示到达 (i-1, j-1) 位置的不同路径的数量,那么i和j需要更新的范围就是 [1, m] 和 [1, n]。状态转移方程跟之前那道题是一样的,因为每个位置只能由其上面和左面的位置移动而来,所以也是由其上面和左边的 dp 值相加来更新当前的 dp 值,如下所示:

dp[i][j] = dp[i-1][j] + dp[i][j-1]

这里就能看出来初始化 d p数组的大小为 (m+1) x (n+1),是为了 handle 边缘情况,当i或j为0时,减1可能会出错。当某个位置是障碍物时,其 dp 值为0,直接跳过该位置即可。这里还需要初始化 dp 数组的某个值,使得其能正常累加。当起点不是障碍物时,其 dp 值应该为1,即dp[1][1] = 1,由于其是由 dp[0][1] + dp[1][0] 更新而来,所以二者中任意一个初始化为1即可。由于之后 LeetCode 更新了这道题的 test case,使得使用 int 型的 dp 数组会有溢出的错误,所以改为使用 long 型的数组来避免 overflow,代码如下:

解法一:

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid.empty() || obstacleGrid[].empty() || obstacleGrid[][] == ) return ;
int m = obstacleGrid.size(), n = obstacleGrid[].size();
vector<vector<long>> dp(m + , vector<long>(n + , ));
dp[][] = ;
for (int i = ; i <= m; ++i) {
for (int j = ; j <= n; ++j) {
if (obstacleGrid[i - ][j - ] != ) continue;
dp[i][j] = dp[i - ][j] + dp[i][j - ];
}
}
return dp[m][n];
}
};

或者我们也可以使用一维 dp 数组来解,省一些空间,参见代码如下:

解法二:

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid.empty() || obstacleGrid[].empty() || obstacleGrid[][] == ) return ;
int m = obstacleGrid.size(), n = obstacleGrid[].size();
vector<long> dp(n, );
dp[] = ;
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
if (obstacleGrid[i][j] == ) dp[j] = ;
else if (j > ) dp[j] += dp[j - ];
}
}
return dp[n - ];
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/63

类似题目:

Unique Paths

Unique Paths III

参考资料:

https://leetcode.com/problems/unique-paths-ii/

https://leetcode.com/problems/unique-paths-ii/discuss/23250/Short-JAVA-solution

https://leetcode.com/problems/unique-paths-ii/discuss/23248/My-C%2B%2B-Dp-solution-very-simple!

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 63. Unique Paths II 不同的路径之二的更多相关文章

  1. LeetCode 63. Unique Paths II不同路径 II (C++/Java)

    题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...

  2. [LeetCode] Unique Paths II 不同的路径之二

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  3. leetcode 63. Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  4. LeetCode: 63. Unique Paths II(Medium)

    1. 原题链接 https://leetcode.com/problems/unique-paths-ii/description/

  5. [leetcode] 63. Unique Paths II (medium)

    原题 思路: 用到dp的思想,到row,col点路径数量 : path[row][col]=path[row][col-1]+path[row-1][col]; 遍历row*col,如果map[row ...

  6. leetcode 62. Unique Paths 、63. Unique Paths II

    62. Unique Paths class Solution { public: int uniquePaths(int m, int n) { || n <= ) ; vector<v ...

  7. 【LeetCode】63. Unique Paths II

    Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are added to ...

  8. [Leetcode Week12]Unique Paths II

    Unique Paths II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/unique-paths-ii/description/ Descrip ...

  9. 62. Unique Paths && 63 Unique Paths II

    https://leetcode.com/problems/unique-paths/ 这道题,不利用动态规划基本上规模变大会运行超时,下面自己写得这段代码,直接暴力破解,只能应付小规模的情形,当23 ...

随机推荐

  1. Mysql 常用数据类型 占用字节数 [转]

    数据类型是定义列中可以存储什么数据以及该数据实际怎么存储的基本规则.Mysql的常用数据类型主要有: 串数据类型:最常用的数据类型,有两种基本的串类型:分别为定长串和不定长串.定长串结束长度固定的字符 ...

  2. .Net轻松处理亿级数据--clickhouse及可视化界面安装介绍

    该篇内容由个人博客点击跳转同步更新!转载请注明出处! 前言 我是在17年就听说过Clickhouse,那时还未接触过亿数据的运算,那时我在的小公司对于千万数据的解决方案还停留在分库分表,最好的也是使用 ...

  3. 图书推荐《图解HTTP》

    作品简介 本书对互联网基盘——HTTP协议进行了全面系统的介绍.作者由HTTP协议的发展历史娓娓道来,严谨细致地剖析了HTTP协议的结构,列举诸多常见通信场景及实战案例,最后延伸到Web安全.最新技术 ...

  4. wpf DATAgrid模板中button 命令绑定以及命令参数绑定

    场景:视频上传功能,上传列表使用DataGrid控件,视频有不同的状态对应不同的操作,DataGrid中最后一列为操作列,里面是Button控件.希望点击Button后执行对应的操作,但是设置Butt ...

  5. SWPUCTF 2019 web

    web1 知识点 ## information_schema绕过 ##无列名注入 注入点在广告申请广告名字处,申请广告名为 查看广告详细返回错误 接下来就是常规的union注入的套路,但是发现or被过 ...

  6. Java11新特性解读

    在去年的9月26日,Oracle官方宣布Java11正式发布,这是Java大版本周期变化后的第一个长期支持版本,非常值得关注.Java9和Java10都在很短的时间内就过渡了,所以,Java11将是一 ...

  7. 怎样解决非管理员账户添加Notepad++右键菜单的批处理的问题?

    bat脚本如下: @echo off color 1e title 将Notepad++增加到右键菜单(或者去关联) goto :menu :menu cls echo. echo. 1 将Notep ...

  8. 解决Vue调用springboot接口403跨域问题

    最近在做一个前后端分离的项目, 前端用的是Vue后端使用的是springboot, 在项目整合的时候发现前端调用后端接口报错403跨域请求问题 前端跨域请求已解决, 那么问题就出在后端了, 找了一些资 ...

  9. mysql-5..6.23-win64.zip安装及配置

    MySQL是一个小巧玲珑但功能强大的数据库,目前十分流行.但是官网给出的安装包有两种格式,一个是msi格式,一个是zip格式的.很多人下了zip格式的解压发现没有setup.exe,面对一堆文件一头雾 ...

  10. 不设置readable,读取图片数据

    直接加载非Readable的Texture,是不能访问其像素数据的: // 加载 var tex = AssetDatabase.LoadAssetAtPath<Texture2D>(as ...