一个关于gcd的等式的证明
证:$a > b$ 且 $gcd(a,b)=1$,有 $gcd(a^n-b^n, a^m-b^m) = a^{gcd(n, m)} - b^{gcd(n,m)}$.
证明:
假设 $n > m$,$r = n \% m$.
根据辗转相除法,
$a^n - b^n = (a^m-b^m)(a^{n-m} + a^{n-2m}b^m + ...+) + a^rb^{n-r} - b^n$,
$gcd(a^n-b^n, a^m-b^m) = gcd(a^m-b^m, a^rb^{n-r}-b^n) = gcd(a^m-b^m, b^{n-r}(a^r-b^r))$,
因为 $r = n \% m$,所以 $b^{n-r} = b^{m\left \lfloor \frac{n}{m} \right \rfloor} = b^{km}$。
考虑 $gcd(b^{km}, a^m-b^m)$,
由多项式除法 $b^{km} = (a^m-b^m)(-b^{(k-1)m}- a^mb^{(k-2)m}-...-a^{(k-1)m}) + a^{km}$,
$gcd(b^{km}, a^m-b^m) = gcd(a^{km}, a^m-b^m) = d$,
$d | b^{km},\ d|a^{km}, \ d | gcd(b^{km}, a^{km})=1$,所以 $d=1$,即 $gcd(b^{n-r}, a^m-b^m)=1$.
所以 $gcd(a^n-b^n, a^m-b^m) = gcd(a^m-b^m, a^{n \% m}-b^{n \% m}) = a^{gcd(n,m)} - b ^ {gcd(n,m)}$.
(其实整个过程就是辗转相除法)
一个关于gcd的等式的证明的更多相关文章
- 一个关于AdaBoost算法的简单证明
下载本文PDF格式(Academia.edu) 本文给出了机器学习中AdaBoost算法的一个简单初等证明,需要使用的数学工具为微积分-1. Adaboost is a powerful algori ...
- UVa 12716 GCD XOR (简单证明)
题意: 问 gcd(i,j) = i ^ j 的对数(j <=i <= N ) N的范围为30000000,有10000组例子 思路:GCD(a,b) = a^b = c GCD(a/c ...
- 【数论】如何证明gcd/exgcd
我恨数论 因为打这篇的时候以为a|b是a是b的倍数,但是懒得改了,索性定义 a|b 为 a是b的倍数 咳咳,那么进入正题,如何证明gcd,也就是 gcd(a,b) = gcd(b,a%b)? 首先,设 ...
- 最大公约数(gcd):Euclid算法证明
1个常识: 如果 a≥b 并且 b≤a,那么 a=b. 2个前提: 1)只在非负整数范围内讨论两个数 m 和 n 的最大公约数,即 m, n ∈ N. 2)0可以被任何数整除,但是0不能整除任何数,即 ...
- 一个数独引发的惨案:零知识证明(Zero-Knowledge Proof)
导言:原文的作者是著名的Ghost和Spectre 这两个协议的创始团队的领队Aviv Zohar.原文作者说他的这篇原文又是引用了以下这两篇学术论文: How to Explain Zero Kno ...
- O(1) 查询gcd
我们来安利一个黑科技.(其实是Claris安利来的 比如我现在有一坨询问,每次询问两个不超过n的数的gcd. n大概1kw,询问大概300w(怎么输入就不是我的事了,大不了交互库 http://mim ...
- IOS多线程 总结 -------------核心代码(GCD)
//NSObject //在子线程中执行代码 // 参数1: 执行的方法 (最多有一个参数,没有返回值) //参数2: 传递给方法的参数 [self performSelectorInBackgrou ...
- 欧几里得算法求最大公约数(gcd)
关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } ...
- 【学习笔记】关于最大公约数(gcd)的定理
手动博客搬家: 本文发表于20181004 00:21:28, 原地址https://blog.csdn.net/suncongbo/article/details/82935140 结论1 \[\g ...
随机推荐
- Qt去掉treeview项的焦点虚线
项目做到后期,进行局部美化的时候发现了问题,在treeview框选择状态下会有虚线. 其实,不仅是treeview,tableview,listview,乃至button在有焦点的情况下,都会出现虚线 ...
- LeetCode 1047. 删除字符串中的所有相邻重复项(Remove All Adjacent Duplicates In String)
1047. 删除字符串中的所有相邻重复项 1047. Remove All Adjacent Duplicates In String 题目描述 LeetCode1047. Remove All Ad ...
- Windows 下删除 Docker 容器的方法
Issue: 删除命令执行失败 如果在 CMD 命令提示符下删除容器可能失败,可切换至 PowerShell 中执行成功. unknown shorthand flag: 'a' in -a See ...
- 二、SpringBoot基础配置
目录 2.1 @SpringBootApplication 2.3 服务器配置 2.4 修改启动banner 小结 2.1 @SpringBootApplication 从上篇文章中知道@Spring ...
- TweenMax参数用法中文介绍
TweenMax 建立在 TweenLite 和 TweenFilterLite 基础之上,因此,又揉合了这二者的功能,使得功能更加的齐备,但是如果说易用性,觉得还是 TweenLite 来得方便一些 ...
- 创建job,delete定时清理数据
Job定时删除数据 需求:对一个表,每天删除一月前的历史数据 思路 .编写SQL,删除一月前的历史数据,使用函数取值 .测试JOB创建,查询,维护,管理 .测试布置job,满足效果 ***测试数据准备 ...
- 手写RPC框架(netty+zookeeper)
RPC是什么?远程过程调用,过程就是业务处理.计算任务,像调用本地方法一样调用远程的过程. RMI和RPC的区别是什么?RMI是远程方法调用,是oop领域中RPC的一种实现,我们熟悉的restfull ...
- Oracle.EntityFrameworkCore使用时报错:ORA-00933:SQL命令未正确结束
如果你在使用 Oracle.EntityFrameworkCore 在执行一些分页查询或者其他数据操作时,遇到“ORA-00933:SQL命令未正确结束”, 请先检查你的DbContext中UseOr ...
- C# Java的加密的各种折腾
24位加密 Java public class DESUtil { private static final String KEY_ALGORITHM = "DESede"; pr ...
- PostgreSQL SERIAL创建自增列
PostgreSQL SERIAL创建自增列 本文我们介绍PostgreSQL SERIAL,并展示如何使用serial类型创建表自增列. PostgreSQL SERIAL伪类型 PostgreSQ ...