The Sum of the k-th Powers(Educational Codeforces Round 7F+拉格朗日插值法)
题目链接
题面
题意
给你\(n,k\),要你求\(\sum\limits_{i=1}^{n}i^k\)的值。
思路
根据数学知识或者说题目提示可知\(\sum\limits_{i=1}^{n}i^k\)可以被一个\(k+1\)次多项式表示。
由拉格朗日插值法(推荐学习博客)的公式:\(L(x)=l(x)\sum\limits_{i=1}^{k+2}y_i\frac{w_i}{x-x_i},\text{其中}l(x)=\prod\limits_{i=1}^{k+2}(x-i),y_i=\sum\limits_{j=1}^{i}j^k,w_i=\prod\limits_{j=1,j\not= i}^{n}\frac{1}{x_i-x_j}\)可以得到结果。
由于本题的特殊性,可以将\(w_i\)进行化简:
w_i&=\prod\limits_{j=1,j\not= i}^{n}\frac{1}{x_i-x_j}&\\
&=\prod\limits_{j=1,j\not= i}^{n}\frac{1}{i-j}&\\
&=\frac{1}{(i-1)(i-2)*\dots*1*(i-(i+1))\dots(i-(k+2))}&\\
&=(-1)^{k+2-i}\frac{1}{(i-1)!(k+2-i)!}&
\end{aligned}
\]
因此我们可以通过\(O(k+2)\)的复杂度得到\(l(x),y_i,x-x_i\),然后通过预处理阶乘的逆元我们可以\(O((k+2)log(k+2))\)得到\(w_i\),所以总复杂度为在\(O((k+2)log(k+2)+(k+2))\)左右。
代码实现如下
#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0)
const double eps = 1e-8;
const int mod = 1000000007;
const int maxn = 1e6 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL;
int n, k, pp;
int A[maxn], y[maxn], inv[maxn], w[maxn];
int qpow(int x, int n) {
int res = 1;
while(n) {
if(n & 1) res = 1LL * res * x % mod;
x = 1LL * x * x % mod;
n >>= 1;
}
return res;
}
void init() {
A[0] = pp = 1;
for(int i = 1; i <= min(n, k + 2); ++i) {
A[i] = 1LL * A[i-1] * i % mod;
inv[i] = qpow(n - i, mod - 2);
pp = (1LL * pp * (n - i) % mod + mod) % mod;
y[i] = (y[i-1] + qpow(i, k)) % mod;
}
for(int i = 1; i <= min(n, k + 2); ++i) {
w[i] = 1LL * A[i-1] * A[k+2-i] % mod;
if((k + 2 - i) & 1) w[i] = mod - w[i];
w[i] = qpow(w[i], mod - 2);
}
}
int main() {
scanf("%d%d", &n, &k);
init();
if(n <= k + 2) return printf("%d\n", y[n]) * 0;
int ans = 0;
for(int i = 1; i <= (k + 2); ++i) {
ans = (ans + 1LL * pp * y[i] % mod * w[i] % mod * inv[i] % mod) % mod;
}
printf("%d\n", ans);
return 0;
}
The Sum of the k-th Powers(Educational Codeforces Round 7F+拉格朗日插值法)的更多相关文章
- Educational Codeforces Round 53 E. Segment Sum(数位DP)
Educational Codeforces Round 53 E. Segment Sum 题意: 问[L,R]区间内有多少个数满足:其由不超过k种数字构成. 思路: 数位DP裸题,也比较好想.由于 ...
- Educational Codeforces Round 37
Educational Codeforces Round 37 这场有点炸,题目比较水,但只做了3题QAQ.还是实力不够啊! 写下题解算了--(写的比较粗糙,细节或者bug可以私聊2333) A. W ...
- Educational Codeforces Round 5
616A - Comparing Two Long Integers 20171121 直接暴力莽就好了...没什么好说的 #include<stdlib.h> #include&l ...
- Educational Codeforces Round 43 (Rated for Div. 2)
Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...
- Educational Codeforces Round 35 (Rated for Div. 2)
Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...
- Educational Codeforces Round 58 (Rated for Div. 2) 题解
Educational Codeforces Round 58 (Rated for Div. 2) 题目总链接:https://codeforces.com/contest/1101 A. Min ...
- Educational Codeforces Round 26
Educational Codeforces Round 26 困到不行的场,等着中午显示器到了就可以美滋滋了 A. Text Volume time limit per test 1 second ...
- Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code
Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code 题目链接 题意: 给出\(n\)个俄罗斯套娃,每个套娃都有一个\( ...
- Educational Codeforces Round 69 D. Yet Another Subarray Problem
Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 题目链接 题意: 求\(\sum_ ...
随机推荐
- js:对象之间的复制
1.:复制obj1,不管obj2是否有这个属性,但是ojb2中的特有属性会保留 var obj1={id:1,name:'zhangsan'} var obj2={}; for (var prop i ...
- 量化编程技术—itertools寻找最优参数
# -*- coding: utf-8 -*- # @Date: 2017-08-26 # @Original: ''' 在量化数据处理中,经常使用itertools来完成数据的各种排列组合以寻找最优 ...
- SonarQube - 安装与运行SonarQube
1 - 下载SonarQube SonarQube有多个版本,其中CE(Community Edition)版本免费开源,其余的开发者版本.企业版本和数据中心版本都是收费版本. 官网下载:https: ...
- DevOps-ISC,CSS,Prometheus,Ansible ,Terraform,zabbix
https://www.terraform.io/ Terraform Use Infrastructure as Code to provision and manage any cloud, in ...
- (CSDN 迁移) JAVA多线程实现-支持定时与周期性任务的线程池(newScheduledThreadPool)
前几篇文章中分别介绍了 单线程化线程池(newSingleThreadExecutor) 可控最大并发数线程池(newFixedThreadPool) 可回收缓存线程池(newCachedThread ...
- Ubuntu下安装与卸载opencv模块
opencv安装 因工程需要,想在python中调用opencv import cv2 现在记录一下如何在Linux系统(ubutun)下安装该模块: 参考了一篇博客:http://blog.csdn ...
- Navicat 创建oracle表空间、新建用户、授权
1.利用数据库管理员账号:SYSTEM,再配合数据库管理口令,连接Oracle数据库. 登录界面: 2.创建表空间文件 进入如下界面 进入如下界面 弹出如下界面,输入表空间名称 最终结果: 2 .新 ...
- Centos7下JDK1.8的安装
1.下载并上传并解压安装包 下载安装包上传到/usr/local目录 https://www.oracle.com/technetwork/java/javase/downloads/jdk8-dow ...
- C++ Primer第五版(中文带书签)
本想发github的(链接更稳定),但是大小超出限制了. 本文件为扫描件,还是在我找了大半天之后的结果.能找到的免费的貌似都是扫描件,在看了一百多页之后(我不喜欢文字不能选中的感觉),我果断买了纸质书 ...
- VB.NET 读写XML
Public Class CSysXML Dim mXmlDoc As New System.Xml.XmlDocument Public XmlFile As String Public Sub N ...