题目链接

传送门

题面

题意

给你\(n,k\),要你求\(\sum\limits_{i=1}^{n}i^k\)的值。

思路

根据数学知识或者说题目提示可知\(\sum\limits_{i=1}^{n}i^k\)可以被一个\(k+1\)次多项式表示。

由拉格朗日插值法(推荐学习博客)的公式:\(L(x)=l(x)\sum\limits_{i=1}^{k+2}y_i\frac{w_i}{x-x_i},\text{其中}l(x)=\prod\limits_{i=1}^{k+2}(x-i),y_i=\sum\limits_{j=1}^{i}j^k,w_i=\prod\limits_{j=1,j\not= i}^{n}\frac{1}{x_i-x_j}\)可以得到结果。

由于本题的特殊性,可以将\(w_i\)进行化简:

\[\begin{aligned}
w_i&=\prod\limits_{j=1,j\not= i}^{n}\frac{1}{x_i-x_j}&\\
&=\prod\limits_{j=1,j\not= i}^{n}\frac{1}{i-j}&\\
&=\frac{1}{(i-1)(i-2)*\dots*1*(i-(i+1))\dots(i-(k+2))}&\\
&=(-1)^{k+2-i}\frac{1}{(i-1)!(k+2-i)!}&
\end{aligned}
\]

因此我们可以通过\(O(k+2)\)的复杂度得到\(l(x),y_i,x-x_i\),然后通过预处理阶乘的逆元我们可以\(O((k+2)log(k+2))\)得到\(w_i\),所以总复杂度为在\(O((k+2)log(k+2)+(k+2))\)左右。

代码实现如下

#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL; #define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0) const double eps = 1e-8;
const int mod = 1000000007;
const int maxn = 1e6 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL; int n, k, pp;
int A[maxn], y[maxn], inv[maxn], w[maxn]; int qpow(int x, int n) {
int res = 1;
while(n) {
if(n & 1) res = 1LL * res * x % mod;
x = 1LL * x * x % mod;
n >>= 1;
}
return res;
} void init() {
A[0] = pp = 1;
for(int i = 1; i <= min(n, k + 2); ++i) {
A[i] = 1LL * A[i-1] * i % mod;
inv[i] = qpow(n - i, mod - 2);
pp = (1LL * pp * (n - i) % mod + mod) % mod;
y[i] = (y[i-1] + qpow(i, k)) % mod;
}
for(int i = 1; i <= min(n, k + 2); ++i) {
w[i] = 1LL * A[i-1] * A[k+2-i] % mod;
if((k + 2 - i) & 1) w[i] = mod - w[i];
w[i] = qpow(w[i], mod - 2);
}
} int main() {
scanf("%d%d", &n, &k);
init();
if(n <= k + 2) return printf("%d\n", y[n]) * 0;
int ans = 0;
for(int i = 1; i <= (k + 2); ++i) {
ans = (ans + 1LL * pp * y[i] % mod * w[i] % mod * inv[i] % mod) % mod;
}
printf("%d\n", ans);
return 0;
}

The Sum of the k-th Powers(Educational Codeforces Round 7F+拉格朗日插值法)的更多相关文章

  1. Educational Codeforces Round 53 E. Segment Sum(数位DP)

    Educational Codeforces Round 53 E. Segment Sum 题意: 问[L,R]区间内有多少个数满足:其由不超过k种数字构成. 思路: 数位DP裸题,也比较好想.由于 ...

  2. Educational Codeforces Round 37

    Educational Codeforces Round 37 这场有点炸,题目比较水,但只做了3题QAQ.还是实力不够啊! 写下题解算了--(写的比较粗糙,细节或者bug可以私聊2333) A. W ...

  3. Educational Codeforces Round 5

    616A - Comparing Two Long Integers    20171121 直接暴力莽就好了...没什么好说的 #include<stdlib.h> #include&l ...

  4. Educational Codeforces Round 43 (Rated for Div. 2)

    Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...

  5. Educational Codeforces Round 35 (Rated for Div. 2)

    Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...

  6. Educational Codeforces Round 58 (Rated for Div. 2) 题解

    Educational Codeforces Round 58 (Rated for Div. 2)  题目总链接:https://codeforces.com/contest/1101 A. Min ...

  7. Educational Codeforces Round 26

    Educational Codeforces Round 26 困到不行的场,等着中午显示器到了就可以美滋滋了 A. Text Volume time limit per test 1 second ...

  8. Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code

    Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code 题目链接 题意: 给出\(n\)个俄罗斯套娃,每个套娃都有一个\( ...

  9. Educational Codeforces Round 69 D. Yet Another Subarray Problem

    Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 题目链接 题意: 求\(\sum_ ...

随机推荐

  1. 【Docker学习之七】Docker图形化管理和监控

    环境 docker-ce-19.03.1-3.el7.x86_64 centos 7 一.Docker管理工具 (官方三剑客)1.Docker Machine(学习的Openstack Heat)Cr ...

  2. Ubuntu下重启mysql

    启动mysql: 方式一:sudo /etc/init.d/mysql start 方式二:sudo service mysql start 停止mysql: 方式一:sudo /etc/init.d ...

  3. 009 SpringCloud 学习笔记5-----Hystrix保护机制

    1.概述 Hystrix,英文意思是豪猪,全身是刺,看起来就不好惹,是一种保护机制.Hystrix也是Netflix公司的一款组件.主页:https://github.com/Netflix/Hyst ...

  4. 22 Oracle数据库基础入门

    1.Oracle数据库的介绍 ORACLE 数据库系统是美国ORACLE 公司(甲骨文)提供的以分布式数据库为核心的一组软件产品,是目前最流行的客户/服务器(CLIENT/SERVER)或 B/S 体 ...

  5. LInux因为缺失网关出现Name or service not known的解决方法

    笔者使用的VMware和CentOS 7.0.在安装完镜像包后,便开始配置静态ip.命令如下 vi /etc/sysconfig/network-scripts/ifcfg-ens33 将BOOTPR ...

  6. 宝塔linux定时任务设置

    选择shell脚本选择执行周期在脚本内容内写入 curl -sS --connect-timeout 10 -m 60 '此处为地址链接';如下图所示:  

  7. 全栈项目|小书架|服务器端-NodeJS+Koa2 实现搜索功能

    搜索功能会包含:热搜.搜索列表. 热搜功能在电商的搜索中经常看到,热搜数据的来源有两种 用户真实的搜索数据,根据算法进行排序 人为推送的数据 想想微博热搜是可以买的就知道热搜功能多么重要了. 我采用第 ...

  8. java之spring之helloword

    这篇文章主要讲 spring的基础的使用案例 项目整体目录结构: 1.新建一个java项目:spring_helloworld 2.在项目下创建一个lib文件夹,并把一些必须的jar包复制过去 新建l ...

  9. C# vb .net实现轮廓特效滤镜

    在.net中,如何简单快捷地实现Photoshop滤镜组中的轮廓特效呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第一步 ...

  10. 在ASP.NET MVC中加载部分视图的方法及差别

    在视图里有多种方法可以加载部分视图,包括Partial() .Action().RenderPartial().RenderAction().RenderPage()方法.下面说明一下这些方法的差别. ...